【題目】如圖,
是
的直徑,點(diǎn)
在
上,
,垂足為
,
,
分別交
延長(zhǎng)線于點(diǎn)
.
![]()
(1)過點(diǎn)
作直線
,使得
,判斷直線
與
的位置關(guān)系,并說理.
(2)若
,
,求
的長(zhǎng).
(3)連接
,探索線段
與
間的數(shù)量關(guān)系,并說明理由.
【答案】(1)直線
與
相切,理由詳見解析;(2)
;(3)
,證明詳見解析.
【解析】
(1)連接OA,根據(jù)
得到
,由BC是
直徑,
,得到
,推出
,利用
得到
,推出
,即可得到直線
與
相切的結(jié)論;
(2)過點(diǎn)A作AM⊥BG于M,根據(jù)
得到∠ACB=∠ABE,證得△AMB∽△BAC,得到
,利用勾股定理求出BC=5,即可求出
,再證明△ABM∽△GBA,求出BG=
;
(3)在
上截取
,連接
.證明
,得到
,由
得到
,推出
.
(1)解:直線
與
相切,
理由:連接OA,
∵
,
∴
,
∵BC是
直徑,
,
∴
,
∴
,
∵
,
∴
,
∴
,
∴
,
∵
,
∴
,
∴
,
∴直線
與
相切.
![]()
(2)過點(diǎn)A作AM⊥BG于M,
∵
,
∴∠ACB=∠ABE,
∵∠BAC=∠AMB=90°,
∴△AMB∽△BAC,
∴
,
∵∠BAC=90°,
,
,
∴BC=5,
∴
,
∴
,
∵∠BAC=∠AMB=90°,∠ABM=∠GBA,
∴△ABM∽△GBA,
∴
,
∴
,
∴BG=
;
![]()
(3)
.
理由:在
上截取
,連接
.
∵
,
∴
,
又∵
,
∴
,
∴
.
又∵
,
∴
,
∴
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時(shí),連接B1B,取BB1的中點(diǎn)D,連接A1D,則A1D的長(zhǎng)度是( 。
![]()
A.
B.
C.
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】武漢“新冠肺炎”發(fā)生以來,某醫(yī)療公司積極復(fù)工,加班加點(diǎn)生產(chǎn)醫(yī)用防護(hù)服,為防控一線助力.以下是該公司以往的市場(chǎng)調(diào)查,發(fā)現(xiàn)該公司防護(hù)服的日銷售量y(套)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,如下圖所示,關(guān)于日銷售利潤(rùn)w(元)和銷售單價(jià)x(元)的幾組對(duì)應(yīng)值如下表:
銷售單價(jià)x(元) | 85 | 95 | 105 |
日銷售利潤(rùn)w(元) | 875 | 1875 | 1875 |
(注:日銷售利潤(rùn)=日銷售量×(銷售單價(jià)一成本單價(jià)))
(1)求y關(guān)于x的函數(shù)解析式(不要求寫出x的取值范圍);
(2)根據(jù)函數(shù)圖象和表格所提供的信息,填空:
該公司生產(chǎn)的防護(hù)服的成本單價(jià)是 元,當(dāng)銷售單價(jià)x= 元時(shí),日銷售利潤(rùn)w最大,最大值是 元;
(3)該公司復(fù)工以后,在政府部門的幫助下,原材料采購成本比以往有了下降,平均起來,每生產(chǎn)一套防護(hù)服,成本比以前下降5元.該公司計(jì)劃開展科技創(chuàng)新,以降低該產(chǎn)品的成本,如果在今后的銷售中,日銷售量與銷售單價(jià)仍存在(1)中的關(guān)系.若想實(shí)現(xiàn)銷售單價(jià)為90元時(shí),日銷售利潤(rùn)不低于3750元的銷售目標(biāo),該產(chǎn)品的成本單價(jià)應(yīng)不超過多少元?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人加工同一種零件,甲每天加工的數(shù)量是乙每天加工數(shù)量的 1.5 倍,兩人各加工 600 個(gè)這種零件,甲比乙少用 5 天.
(1)求甲、乙兩人每天各加工多少個(gè)這種零件?
(2)已知甲、乙兩人加工這種零件每天的加工費(fèi)分別是 150 元和 120 元,現(xiàn)有 3000 個(gè)這種零件的加工任務(wù),甲單獨(dú)加工一段時(shí)間后另有安排,剩余任務(wù)由乙單獨(dú)完成.如果總加工費(fèi)不超過 7800 元,那么甲至少加工了多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平面直角坐標(biāo)系中,四邊形OABC是正方形,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)p為邊AB上的一點(diǎn),
CPB=60°,沿CP折疊正方形后,點(diǎn)B落在平面內(nèi)B’處,B’的坐標(biāo)為( )
![]()
A.(2, 2
)B.(
, 2-2
)C.(2, 4-2
)D.(
, 4-2
)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線
交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C.直線
經(jīng)過點(diǎn)A,C.
(1)求拋物線的解析式;
(2)點(diǎn)P是拋物線上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線,交直線AC于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①當(dāng)
是直角三角形時(shí),求點(diǎn)P的坐標(biāo);
②作點(diǎn)B關(guān)于點(diǎn)C的對(duì)稱點(diǎn)
,則平面內(nèi)存在直線l,使點(diǎn)M,B,
到該直線的距離都相等.當(dāng)點(diǎn)P在y軸右側(cè)的拋物線上,且與點(diǎn)B不重合時(shí),請(qǐng)直接寫出直線
的解析式.(k,b可用含m的式子表示)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點(diǎn)D在線段BC上,AF平分DE交BC于點(diǎn)F,連接BE,EF.
(1)CD與BE相等?若相等,請(qǐng)證明;若不相等,請(qǐng)說明理由;
(2)若∠BAC=90°,求證:BF2+CD2=FD2.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)發(fā)現(xiàn)
如圖,點(diǎn)
為線段
外一動(dòng)點(diǎn),且
,
.
填空:當(dāng)點(diǎn)
位于____________時(shí),線段
的長(zhǎng)取得最大值,且最大值為_________.(用含
,
的式子表示)
![]()
(2)應(yīng)用
點(diǎn)
為線段
外一動(dòng)點(diǎn),且
,
.如圖所示,分別以
,
為邊,作等邊三角形
和等邊三角形
,連接
,
.
①找出圖中與
相等的線段,并說明理由;
②直接寫出線段
長(zhǎng)的最大值.
![]()
(3)拓展
如圖,在平面直角坐標(biāo)系中,點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
,點(diǎn)
為線段
外一動(dòng)點(diǎn),且
,
,
,求線段
長(zhǎng)的最大值及此時(shí)點(diǎn)
的坐標(biāo).
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com