【題目】甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在O點(diǎn)正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達(dá)式y(tǒng)=a(x﹣4)2+h,已知點(diǎn)O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m.![]()
(1)當(dāng)a=﹣
時(shí),①求h的值;
②通過計(jì)算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到與點(diǎn)O的水平距離為7m,離地面的高度為
m的Q處時(shí),乙扣球成功,求a的值.
【答案】
(1)解:∵a=-
,
∴y=-
(x-4)2+h,
①將 P(0,1) 代入 y=
(x4)2+h ,得:
∴h=
.
②將 x=5 代入 y=
(x4)2+
,
∴ y=
=
=1.625>1.55.
∴球能過網(wǎng).
(2)解:將 P(0,1) , Q(7,
) 代入 y=a(x4)2+h ,
∴
,
∴ a=
.
【解析】(1)①根據(jù)題意知a=-
,將P(0,1)代入拋物線解析式求出h;②將 x=5 代入拋物線解析式求出y的值,再與1.55比較大小即可判斷.
(2)根據(jù)題意得出P、Q的坐標(biāo),將其代入拋物線解析式,得到一個(gè)關(guān)于a和h的一元二次方程,解之即可求出a的值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣4mx(m≠0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求點(diǎn)A,B的坐標(biāo)及拋物線的對稱軸;
(2)過點(diǎn)B的直線l與y軸交于點(diǎn)C,且tan∠ACB=2,直接寫出直線l的表達(dá)式;
(3)如果點(diǎn)P(x1 , n)和點(diǎn)Q(x2 , n)在函數(shù)y=mx2﹣4mx(m≠0)的圖象上,PQ=2a且x1>x2 , 求x12+ax2﹣6a+2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】ABCD中,E是CD邊上一點(diǎn),
(1)將△ADE繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),使AD、AB重合,得到△ABF,如圖1所示.觀察可知:與DE相等的線段是 , ∠AFB=∠ .![]()
(2)如圖2,正方形ABCD中,P、Q分別是BC、CD邊上的點(diǎn),且∠PAQ=45°,試通過旋轉(zhuǎn)的方式說明:DQ+BP=PQ.![]()
(3)在(2)題中,連接BD分別交AP、AQ于M、N,你還能用旋轉(zhuǎn)的思想說明BM2+DN2=MN2 . ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)
在正方形
外,連接
,過點(diǎn)
作
的垂線交
于
,若
,則下列結(jié)論不正確的是( )
![]()
A.
B.點(diǎn)
到直線
的距離為![]()
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=a(x+2)2+m過原點(diǎn),與拋物線y2=
(x﹣3)2+n交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B,C.下列結(jié)論:①兩條拋物線的對稱軸距離為5;②x=0時(shí),y2=5;③當(dāng)x>3時(shí),y1﹣y2>0;④y軸是線段BC的中垂線.正確結(jié)論是(填寫正確結(jié)論的序號). ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列網(wǎng)格圖中,每個(gè)小正方形的邊長均為
個(gè)單位長度.已知
在網(wǎng)格圖中的位置如圖所示.
(1)請?jiān)诰W(wǎng)格圖中畫出
向右平移
單位后的圖形
,并直接寫出平移過程中線段
掃過的面積;
(2)請?jiān)诰W(wǎng)格圖中畫出
以
為對稱中心的圖形
.(保留作圖痕跡)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(﹣1,0).![]()
(1)求點(diǎn)B,C的坐標(biāo);
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個(gè)單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)
,點(diǎn)
,點(diǎn)
的坐標(biāo)分別為
,
,
.
![]()
(1)將
平移后得到
,若點(diǎn)
對應(yīng)的點(diǎn)
的坐標(biāo)為
,畫出平移后的
;
(2)畫出
關(guān)于原點(diǎn)
成中心對稱的
;
(3)如果以
,
,
,
為頂點(diǎn)的四邊形是平行四邊形,請直接寫出滿足條件的所有點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB//CD,點(diǎn)E為平面內(nèi)一點(diǎn),BE⊥CE于E
(1)如圖1,請直接寫出∠ABE和∠DCE之間的數(shù)量關(guān)系
(2)如圖2,過點(diǎn)E作EF⊥CD,垂足為F,求證:∠CEF=∠ABE
(3)如圖3,在(2)的條件下,作EG平分∠CEF,交DF于點(diǎn)G,作ED平分∠BEF,交CD于D,連接BD,若∠DBE+∠ABD=180°,且∠BDE=3∠GEF,求∠BEG的度數(shù).
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com