【題目】已知:以O(shè)為圓心的扇形AOB中,∠AOB=90°,點(diǎn)C為
上一動點(diǎn),射線AC交射線OB于點(diǎn)D,過點(diǎn)D作OD的垂線交射線OC于點(diǎn)E,聯(lián)結(jié)AE.![]()
(1)如圖1,當(dāng)四邊形AODE為矩形時,求∠ADO的度數(shù);
(2)當(dāng)扇形的半徑長為5,且AC=6時,求線段DE的長;
(3)聯(lián)結(jié)BC,試問:在點(diǎn)C運(yùn)動的過程中,∠BCD的大小是否確定?若是,請求出它的度數(shù);若不是,請說明理由.
【答案】
(1)解:如圖1中,
![]()
∵四邊形ABCD是矩形,
∴AD=EC,AC=CD,OC=CE,∠AOD=90°
∴AC=OC=OA,
∴△AOC是等邊三角形,
∴∠OAD=60°,
∴∠ADO=90°﹣∠OAD=30°.
(2)解:如圖2中,作OH⊥AD于H.
![]()
∵OA=OC,OH⊥AC,
∴AH=HC=3,
∵∠OAH=∠OAD,∠AHO=∠AOD,
∴△AOH∽△ADO,
∴
=
,
∴
=
,
∴AD=
,
∴CD=AD﹣AC=
,
∵DE⊥OD,
∴∠EDO=90°,
∴∠AOD+∠EDO=180°,
∴DE∥OA,
∴
=
,
∴
=
,
∴DE=
.
(3)解:如圖3中,結(jié)論:∠BCD的值是確定的.∠BCD=45°.
理由:連接AB、BC.
![]()
∵∠BCD=∠BAC+∠ABC,
又∵∠BAC=
∠BOC,∠ABC=
∠AOC,
∴∠BCD=
∠BOC+
∠AOC=
(∠BCO+∠AOC)=
×90°=45°.
【解析】(1)利用矩形的性質(zhì),只要證明△OAC是等邊三角形即可求解題中問題;(2)作OH⊥AD于H.由△AOH∽△ADO,推出
=
,可得AD的長度,CD=AD﹣AC的長度,由DE∥OA,可得
=
,即可求出DE;(3)結(jié)論:∠BCD的值是確定的.∠BCD=45°.連接AB、BC.由∠BCD=∠BAC+∠ABC,又∠BAC=
∠BOC,∠ABC=
∠AOC,即可得出結(jié)論。
【考點(diǎn)精析】掌握矩形的性質(zhì)和平行線分線段成比例是解答本題的根本,需要知道矩形的四個角都是直角,矩形的對角線相等;三條平行線截兩條直線,所得的對應(yīng)線段成比例.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點(diǎn)H,請你添加一個適當(dāng)?shù)臈l件:_____,使△AEH≌△CEB.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為mcm,寬為ncm)的盒子底部(如圖②)盒子底面未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分的周長和是( )
![]()
A.4m cmB.4n cmC.2(m+n) cmD.4(m-n) cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,![]()
(1)求作⊙O,圓心O是AD的中垂線與AB的交點(diǎn),OD為半徑.(尺規(guī)作圖,不寫作法,保留痕跡)
(2)求證:BC是⊙O切線.
(3)若BD=5,DC=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的面積為16cm2,對交線交于點(diǎn)O;以AB、AO為鄰邊作平行四邊AOC1B,對角線交于點(diǎn)O1,以AB、AO1為鄰邊作平行四邊形AO1C2B,…;依此類推,則平行四邊形AO4C5B的面積為( )
![]()
A.
cm2 B. 1cm2 C. 2cm2 D. 4cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是橘子的銷售額隨橘子賣出質(zhì)量的變化表:
質(zhì)量/千克 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | … |
銷售額/元 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | … |
(1)這個表反映了哪兩個變量之間的關(guān)系?哪個是自變量?哪個是因變量?
(2)當(dāng)橘子賣出5千克時,銷售額是_______元.
(3)如果用
表示橘子賣出的質(zhì)量,
表示銷售額,按表中給出的關(guān)系,
與
之間的關(guān)系式為______.
(4)當(dāng)橘子的銷售額是100元時,共賣出多少千克橘子?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,兩正方形在數(shù)軸上運(yùn)動,起始狀態(tài)如圖所示.A、F表示的數(shù)分別為-2、10,大正方形的邊長為4個單位長度,小正方形的邊長為2個單位長度,兩正方形同時出發(fā),相向而行,小正方形的速度是大正方形速度的兩倍,兩個正方形從相遇到剛好完全離開用時2秒.完成下列問題:
![]()
(1)求起始位置D、E表示的數(shù);
(2)求兩正方形運(yùn)動的速度;
(3)M、N分別是AD、EF中點(diǎn),當(dāng)正方形開始運(yùn)動時,射線MA開始以15°/s的速度順時針旋轉(zhuǎn)至MD結(jié)束,射線NF開始以30°/s的速度逆時針旋轉(zhuǎn)至NE結(jié)束,若兩射線所在直線互相垂直時,求MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)過程中,對教材中的一個有趣問題做如下探究:
![]()
(習(xí)題回顧)已知:如圖1,在
中,
,
是角平分線,
是高,
、
相交于點(diǎn)
.求證:
;
(變式思考)如圖2,在
中,
,
是
邊上的高,若
的外角
的平分線交
的延長線于點(diǎn)
,其反向延長線與
邊的延長線交于點(diǎn)
,則
與
還相等嗎?說明理由;
(探究延伸)如圖3,在
中,
上存在一點(diǎn)
,使得
,
的平分線
交
于點(diǎn)
.
的外角
的平分線所在直線
與
的延長線交于點(diǎn)
.直接寫出
與
的數(shù)量關(guān)系.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com