【題目】某校為了解本校九年級男生體育測試中跳繩成績的情況,隨機(jī)抽取該校九年級若干名男生,調(diào)查他們的跳繩成績
(次/分),按成績分成
,
,
,
,
五個等級.將所得數(shù)據(jù)繪制成如下統(tǒng)計圖.根據(jù)圖中信息,解答下列問題:
該校被抽取的男生跳繩成績頻數(shù)分布直方圖
![]()
(1)本次調(diào)查中,男生的跳繩成績的中位數(shù)在________等級;
(2)若該校九年級共有男生400人,估計該校九年級男生跳繩成績是
等級的人數(shù).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,經(jīng)過原點(diǎn)O的拋物線
(a≠0)與x軸交于另一點(diǎn)A(
,0),在第一象限內(nèi)與直線y=x交于點(diǎn)B(2,t).
(1)求這條拋物線的表達(dá)式;
(2)在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);
(3)如圖2,若點(diǎn)M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點(diǎn)P,使得△POC∽△MOB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D為AB中點(diǎn),過點(diǎn)D作DF//BC交AC于點(diǎn)E,且DE=EF,連接AF,CF,CD.
(1)求證:四邊形ADCF為平行四邊形;
(2)若∠ACD=45°,∠EDC=30°,BC=4,求CE的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+b與反比例函數(shù)y=
的圖形交于A(a,4)和B(4,1)兩點(diǎn)
(1)求b,k的值;
(2)若點(diǎn)C(x,y)也在反比例函數(shù)y=
(x>0)的圖象上,求當(dāng)2≤x≤6時,函數(shù)值y的取值范圍;
(3)將直線y=﹣x+b向下平移m個單位,當(dāng)直線與雙曲線沒有交點(diǎn)時,求m的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
網(wǎng)格的每個小正方形邊長均為1,每個小正方形的頂點(diǎn)稱為格點(diǎn).已知
和
的頂點(diǎn)都在格點(diǎn)上,線段
的中點(diǎn)為
.
(1)以點(diǎn)
為旋轉(zhuǎn)中心,分別畫出把
順時針旋轉(zhuǎn)
,
后的
,
;
(2)利用(1)變換后所形成的圖案,解答下列問題:
①直接寫出四邊形
,四邊形
的形狀;
②直接寫出
的值;
③設(shè)
的三邊
,
,
,請證明勾股定理.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線
與
軸交于點(diǎn)
,與
軸交點(diǎn)
,拋物線
經(jīng)過
,
兩點(diǎn),與
軸交于另一點(diǎn)
.如圖1,點(diǎn)
為拋物線上任意一點(diǎn),過點(diǎn)
作
軸交
于
.
![]()
(1)求拋物線的解析式;
(2)當(dāng)
是直角三角形時,求
點(diǎn)坐標(biāo);
(3)如圖2,作
點(diǎn)關(guān)于直線
的對稱點(diǎn)
,作直線
與拋物線交于
,設(shè)拋物線對稱軸與
軸交點(diǎn)為
,當(dāng)直線
經(jīng)過點(diǎn)
時,請你直接寫出
的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C、E在⊙O上,∠B=2∠ACE,在BA的延長線上有一點(diǎn)P,使得∠P=∠BAC,弦CE交AB于點(diǎn)F,連接AE.
![]()
(1)求證:PE是⊙O的切線;
(2)若AF=2,AE=EF=
,求OA的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題發(fā)現(xiàn))
(1)如圖1所示,在
中,
,
,點(diǎn)
為
上一點(diǎn),作
,
交
于點(diǎn)
,則
________;
![]()
(類比研究)
(2)將
繞點(diǎn)
順時針旋轉(zhuǎn)到圖2所示位置,此時(1)中的結(jié)論還成立嗎?請說明理由;
![]()
(拓展延伸)
(3)若點(diǎn)
為
邊中點(diǎn),在
繞點(diǎn)
旋轉(zhuǎn)的過程中,當(dāng)
、
、
三點(diǎn)共線時,求
的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①一組對邊平行,另一組對邊相等的四邊形是平行四邊形;②經(jīng)過有交通信號燈的路口,遇到紅燈是必然事件;③若甲組數(shù)據(jù)的方差是
,乙組數(shù)據(jù)的方差是
,則甲數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定;④圓內(nèi)接正六邊形的邊長等于這個圓的半徑,其中正確說法的個數(shù)是( )
A.
個B.
個C.
個D.
個
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com