分析 (1)根據(jù)正方形的性質(zhì)得AB=AD,∠D=∠ABC=∠BAD=90°,則可根據(jù)“SAS”證明△ADE≌△ABF,于是根據(jù)旋轉(zhuǎn)的定義,將△ADE繞A點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)90度得到△ABF;
(2)由△ADE≌△ABF得S△ADE=S△ABF,所以S四邊形AFCE=S正方形ABCD,然后根據(jù)正方形的面積公式計(jì)算即可.
解答 解:(1)∵四邊形ABCD是正方形,
∴AB=AD,∠D=∠ABC=∠BAD=90°,
在△ADE和△ABF中,
$\left\{\begin{array}{l}{AD=AB}\\{∠D=∠ABF}\\{DE=BF}\end{array}\right.$,
∴△ADE≌△ABF,
∴△ABF可以由△ADE繞旋轉(zhuǎn)中心A點(diǎn),按順時(shí)針?lè)较蛐D(zhuǎn)90度得到;
故答案為A,90;
(2)∵△ADE≌△ABF,
∴S△ADE=S△ABF,
∴S四邊形AFCE=S正方形ABCD=82=64.
點(diǎn)評(píng) 本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2對(duì) | B. | 3對(duì) | C. | 4對(duì) | D. | 5對(duì) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a2-b2=(a-b)(a+b) | B. | mx+my+nx+ny=m(x+y)+n(x+y) | ||
| C. | (x+1)(x-1)=x2-1 | D. | x2-2x+1=x(x-2)+1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4-y=4-x | B. | x2=y2 | C. | $\frac{x}{a}=\frac{y}{a}$ | D. | -2ax=-2ay |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com