
解:(1)∵二次函數(shù)y
1=ax
2+3x+c的圖象經(jīng)過原點及點A(1,2),
∴將(0,0),代入得出:
c=0,
將(1,2)代入得出:
a+3=2,
解得:a=-1,
故二次函數(shù)解析式為:y
1=-x
2+3x,
∵圖象與x軸相交于另一點B,
∴0=-x
2+3x,
解得:x=0或3,
則B(3,0);
(2)①由已知可得C(6,0)
如圖:過A點作AH⊥x軸于H點,
∵DP∥AH,
∴△OPD∽△OHA,
∴

=

,
即

=

,
∴PD=2a,
∵正方形PDEF,
∴E(3a,2a),
∵E(3a,2a)在二次函數(shù)y
1=-x
2+3x的圖象上,
∴a=

;
即OP=

.
②如圖1:

當點F、點N重合時,有OF+CN=6,
∵直線AO過點(1,2),
故直線解析式為:y=2x,
當OP=t,
則AP=2t,
∵直線AC過點(1,2),(6,0),
代入y=ax+b,

,
解得:

,
故直線AC的解析式為:y=-

x+

,
∵當OP=t,QC=2t,
∴QO=6-2t,
∴GQ=-

(6-2t)+

=

t,
即NQ=

t,
∴OP+PN+NQ+QC=6,
則有3t+2t+

t=6,
解得:t=

;
如圖2:

當點F、點Q重合時,有OF+CQ=6,則有3t+2t=6,
解得:t=

;
如圖3:

當點P、點N重合時,有OP+CN=6,則有t+2t+

t=6,
解得:t=

,
如圖4:

當點P、點Q重合時,有OP+CQ=6,則有t+2t=6,
解得:t=2.
故此刻t的值為:t
1=

,t
2=

,t
3=

,t
4=2.
分析:(1)利用二次函數(shù)y
1=ax
2+3x+c的圖象經(jīng)過原點及點A(1,2),分別代入求出a,c的值即可;
(2)①過A點作AH⊥x軸于H點,根據(jù)DP∥AH,得出△OPD∽△OHA,進而求出OP的長;
②分別利用當點F、點N重合時,當點F、點Q重合時,當點P、點N重合時,當點P、點Q重合時,求出t的值即可.
點評:此題主要考查了二次函數(shù)的綜合應用以及相似三角形的判定與性質(zhì)以及待定系數(shù)法求解析式,根據(jù)已知結(jié)合圖象分類討論得出t的值是解題關鍵.