| A. | x | B. | 180°-2x | C. | 180°-x | D. | 2x |
分析 延長C′D交AC于M,如圖,根據(jù)全等的性質(zhì)得∠C′=∠ACD,∠C′AD=∠CAD=∠B′AE=x,再利用三角形外角性質(zhì)得∠C′MC=∠C′+∠C′AM=∠C′+2x,接著利用C′D∥B′E得到∠AEB=∠C′MC,而根據(jù)三角形內(nèi)角和得到∠AEB′=180°-∠B′-x,則∠C′+2x=180°-∠B′-x,所以∠C′+∠B′=180°-3x,利用三角形外角性質(zhì)和等角代換得到∠BFC=∠C=x+∠C′+∠B′,所以∠BFC=180°-2x.
解答
解:延長C′D交AC于M,如圖,∵△ADC≌△ADC′,△AEB≌△AEB′,∴∠C′=∠ACD,∠C′AD=∠CAD=∠B′AE=x,
∴∠C′MC=∠C′+∠C′AM=∠C′+2x,
∵C′D∥B′E,
∴∠AEB=∠C′MC,
∵∠AEB′=180°-∠B′-∠B′AE=180°-∠B′-x,
∴∠C′+2x=180°-∠B′-x,
∴∠C′+∠B′=180°-3x,
∵∠BFC=∠BDF+∠DBF=∠DAC+∠B′=x+∠ACD+∠B′=x+∠C′+∠B′
=x+180°-3x=180°-2x.
故選B.
點評 本題考查了全等三角形的性質(zhì):全等三角形的對應(yīng)邊相等;全等三角形的對應(yīng)角相等.也考查了平行線的性質(zhì).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com