欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 初中數學 > 題目詳情
關于x的方程kx2+(k+2)x+
k4
=0
有兩個不相等的實數根.
(1)求實數k的取值范圍;
(2)是否存在實數k,使方程的兩個實數根之和等于兩實數根之積的算術平方根?若存在,求出k的值;若不存在,說明理由.
分析:(1)由于關于x的方程kx2+(k+2)x+
k
4
=0
有兩個不相等的實數根,那么它的判別式△應該是大于0,由此可以建立關于k的不等式,解不等式即可求出實數k的取值范圍;
(2)首先利用根與系數的關系求出兩根之和和兩根之積,然后利用:方程的兩個實數根之和等于兩實數根之積的算術平方根,即可列出關于k的方程,解方程即可求出k的值,再判斷是否在(1)求出的k的范圍內即可.
解答:解:(1)依題意得△=(k+2)2-4k•
k
4
>0
,
∴k>-1,
又∵k≠0,
∴k的取值范圍是k>-1且k≠0;
(2)解:不存在符合條件的實數k,使方程的兩個實數根之和等于兩實數根之積的算術平方根,
理由是:設方程kx2+(k+2)x+
k
4
=0
的兩根分別為x1,x2,
由根與系數的關系有:
x1+x2=-
k+2
k
x1x2=
1
4

∵方程的兩個實數根之和等于兩實數根之積的算術平方根,
-
k+2
k
=
1
2
,
k=-
4
3
,
由(1)知,k>-1,且k≠0,
∴k=-
4
3
舍去,
因此不存在符合條件的實數k,使方程的兩個實數根之和等于兩實數根之積的算術平方根.
點評:本題重點考查了一元二次方程根的判別式和根與系數的關系,是一個綜合性的題目,也是一個難度中等的題目.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

關于x的方程kx2+(k+1)x+
k
4
=0
有兩個不相等的實數根,則k的取值范圍是( 。
A、k>-1且k≠0
B、k<
1
2
C、k>-
1
2
且k≠0
D、k<1

查看答案和解析>>

科目:初中數學 來源: 題型:

若關于x的方程kx2-8x+5=0有實數根,則k的取值范圍是( 。
A、k≤
64
5
B、k≥-
16
5
C、k≥
16
5
D、k≤
16
5

查看答案和解析>>

科目:初中數學 來源: 題型:

已知關于x的方程kx2+2(k+1)x-3=0
(1)若方程有兩個有理數根,求整數k的值
(2)若k滿足不等式16k+3>0,試討論方程根的情況.

查看答案和解析>>

科目:初中數學 來源: 題型:

如果關于x的方程kx2-6x+9=0有兩個不相等的實數根,那么k的取值范圍是
k≤1且k≠0
k≤1且k≠0

查看答案和解析>>

科目:初中數學 來源: 題型:

如果關于x的方程kx2+3x+2=0有兩個實數根,則k取值范圍為( 。

查看答案和解析>>

同步練習冊答案