如圖所示,已知AD為△ABC的中線,E為AC上一點,連接BE交AD于F且AE=FE,試說明BF與AC相等嗎?為什么?
![]()
|
解:延長 AD到G使DG=AD,連接BG、CG,因為GD=AD,BD=DC,所以四邊形ABGC是平行四邊形(對角線互相平分的四邊形是平行四邊形),從而, AC所以∠ 1=∠BGD(兩直線平行,內錯角相等).又 AE=FE,所以∠1=∠3(等邊對等角),所以∠ BGD=∠3=∠BFG,所以 BG=BF,而BC=AC(已證),所以BF=AC. |
|
要說明 BF與AC相等,可轉化為證角.而邊、角關系聯(lián)系不到一塊,這就需要構造圖形把已知條件聯(lián)系起來,由D是BC的中點,可看做平行四邊形一條對角線的中點,因此只要把另一條對角線作出來,就構成了平行四邊形,此題得以解決. |
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源:2011年安徽省中考說明數學檢測卷(四)(解析版) 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com