【題目】如圖1,在菱形ABCD中,AB=
,tan∠ABC=2,點(diǎn)E從點(diǎn)D出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿著射線DA的方向勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒),將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)角α(α=∠BCD),得到對(duì)應(yīng)線段CF.
![]()
(1)求證:BE=DF;
(2)當(dāng)t= 秒時(shí),DF的長(zhǎng)度有最小值,最小值等于 ;
(3)如圖2,連接BD、EF、BD交EC、EF于點(diǎn)P、Q,當(dāng)t為何值時(shí),△EPQ是直角三角形?
【答案】(1)見(jiàn)解析;(2)t=(6
+6),最小值等于12;(3)t=6秒或6
秒時(shí),△EPQ是直角三角形
【解析】
(1)由∠ECF=∠BCD得∠DCF=∠BCE,結(jié)合DC=BC、CE=CF證△DCF≌△BCE即可得;
(2)作BE′⊥DA交DA的延長(zhǎng)線于E′.當(dāng)點(diǎn)E運(yùn)動(dòng)至點(diǎn)E′時(shí),由DF=BE′知此時(shí)DF最小,求得BE′、AE′即可得答案;
(3)①∠EQP=90°時(shí),由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根據(jù)AB=CD=6
,tan∠ABC=tan∠ADC=2即可求得DE;
②∠EPQ=90°時(shí),由菱形ABCD的對(duì)角線AC⊥BD知EC與AC重合,可得DE=6
.
(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,
∴∠DCF=∠BCE,
∵四邊形ABCD是菱形,
∴DC=BC,
在△DCF和△BCE中,
,
∴△DCF≌△BCE(SAS),
∴DF=BE;
(2)如圖1,作BE′⊥DA交DA的延長(zhǎng)線于E′.
![]()
當(dāng)點(diǎn)E運(yùn)動(dòng)至點(diǎn)E′時(shí),DF=BE′,此時(shí)DF最小,
在Rt△ABE′中,AB=6
,tan∠ABC=tan∠BAE′=2,
∴設(shè)AE′=x,則BE′=2x,
∴AB=
x=6
,x=6,
則AE′=6
∴DE′=6
+6,DF=BE′=12,
時(shí)間t=6
+6,
故答案為:6
+6,12;
(3)∵CE=CF,
∴∠CEQ<90°,
①當(dāng)∠EQP=90°時(shí),如圖2①,
![]()
∵∠ECF=∠BCD,BC=DC,EC=FC,
∴∠CBD=∠CEF,
∵∠BPC=∠EPQ,
∴∠BCP=∠EQP=90°,
∵AB=CD=6
,tan∠ABC=tan∠ADC=2,
∴DE=6,
∴t=6秒;
②當(dāng)∠EPQ=90°時(shí),如圖2②,
![]()
∵菱形ABCD的對(duì)角線AC⊥BD,
∴EC與AC重合,
∴DE=6
,
∴t=6
秒,
綜上所述,t=6秒或6
秒時(shí),△EPQ是直角三角形.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,AD是∠BAC的平分線,E為AD上一點(diǎn),以BE為一邊且在BE下方作等邊三角形BEF,連接CF.
![]()
(1)求證:△ABE≌△CBF;
(2)求∠ACF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,圓O是以AB為直徑的△ABC的外接圓,D是劣弧
的中點(diǎn),連AD并延長(zhǎng)與過(guò)C點(diǎn)的切線交于點(diǎn)P,OD與BC相交于E;
(1)求證:OE=
AC;
(2)求證:
;
(3)當(dāng)AC=6,AB=10時(shí),求切線PC的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱BC的高為10米,燈柱BC與燈桿AB的夾角為120°.路燈采用錐形燈罩,在地面上的照射區(qū)域DE的長(zhǎng)為13.3米,從D、E兩處測(cè)得路燈A的仰角分別為α和45°,且tanα=6.求燈桿AB的長(zhǎng)度.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“綠水青山就是金山銀山”,隨著生活水平的提高,人們對(duì)飲水品質(zhì)的需求越來(lái)越高.孝感市槐蔭公司根據(jù)市場(chǎng)需求代理
、
兩種型號(hào)的凈水器,每臺(tái)
型凈水器比每臺(tái)
型凈水器進(jìn)價(jià)多200元,用5萬(wàn)元購(gòu)進(jìn)
型凈水器與用4.5萬(wàn)元購(gòu)進(jìn)
型凈水器的數(shù)量相等.
(1)求每臺(tái)
型、
型凈水器的進(jìn)價(jià)各是多少元;
(2)槐蔭公司計(jì)劃購(gòu)進(jìn)
、
兩種型號(hào)的凈水器共50臺(tái)進(jìn)行試銷(xiāo),其中
型凈水器為
臺(tái),購(gòu)買(mǎi)資金不超過(guò)9.8萬(wàn)元.試銷(xiāo)時(shí)
型凈水器每臺(tái)售價(jià)2500元,
型凈水器每臺(tái)售價(jià)2180元.槐蔭公司決定從銷(xiāo)售
型凈水器的利潤(rùn)中按每臺(tái)捐獻(xiàn)
元作為公司幫扶貧困村飲水改造資金,設(shè)槐蔭公司售完50臺(tái)凈水器并捐獻(xiàn)扶貧資金后獲得的利潤(rùn)為
,求
的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“安全教育”是學(xué)校必須開(kāi)展的一項(xiàng)重要工作.某校為了了解家長(zhǎng)和學(xué)生參與“暑期安全知識(shí)學(xué)習(xí)”的情況,進(jìn)行了網(wǎng)上測(cè)試,并在本校學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查.若把參與測(cè)試的情況分為
類情形:
.僅學(xué)生自己參與;
.家長(zhǎng)和學(xué)生一起參與;
.僅家長(zhǎng)自己參與;
.家長(zhǎng)和學(xué)生都未參與.根據(jù)調(diào)查情況,繪制了以下不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
在這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中
類所對(duì)應(yīng)扇形的圓心角的度數(shù);
根據(jù)抽樣調(diào)查結(jié)果,估計(jì)該校
名學(xué)生中“家長(zhǎng)和學(xué)生都未參與”的人數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,AB=AC=5,BC=6,AD是BC邊上的中線,四邊形ADBE是平行四邊形.
(1)求證:四邊形ADBE是矩形;
(2)求矩形ADBE的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D、E為BC上的點(diǎn),AD平分∠BAE,CA=CD.
![]()
(1)求證:∠CAE=∠B;
(2)若∠B=50°,∠C=3∠DAB,求∠C的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形都是由面積為1的正方形按一定的規(guī)律組成的,其中,第1個(gè)圖形中面積為1的正方形有9個(gè),第2個(gè)圖形中面積為1的正方形有14個(gè),……,按此規(guī)律,則第幾個(gè)圖形中面積為1的正方形的個(gè)數(shù)為2019個(gè)( )
![]()
A.400B.401C.402D.403
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com