分析 已知OM是△ADC的中位線,再結(jié)合已知條件則DC的長可求出,所以利用勾股定理可求出AC的長,由直角三角形斜邊上中線的性質(zhì)則BO的長即可求出.
解答 解:∵四邊形ABCD是矩形,
∴∠D=90°,
∵O是矩形ABCD的對角線AC的中點,M是AD的中點,
∴OM是△ADC的中位線,
∴OM=3,
∴DC=6,
∵AD=8,
∴AC=$\sqrt{A{D}^{2}+D{C}^{2}}$=10,
∴BO=$\frac{1}{2}$AC=5,
故答案為:5.
點評 本題考查了矩形的性質(zhì),勾股定理的運用,直角三角形斜邊上中線的性質(zhì)以及三角形的中位線的應(yīng)用,解此題的關(guān)鍵是求出AC的長.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com