如圖,Rt△ABC中,AC=BC=8,∠ACB=90º,直角邊AC在x軸上,B點在第二象限,A(2,0),AB交y軸于E,將紙片過E點折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開還原沿EF剪開得到四邊形BCFE,然后把四邊形BCFE從E點開始沿射線EA平移,至B點到達A點停止.設(shè)平移時間為t(s),移動速度為每秒1個單位長度,平移中四邊形B1C1F1E1與△AEF重疊的面積為S.![]()
(1)求折痕EF的長;
(2)直接寫出S與t的函數(shù)關(guān)系式及自變量t的取 值范圍.
(3)若四邊形BCFE平移時,另有一動點H與四邊形BCFE同時出發(fā),以每秒
個單位長度從點A沿射線AC運動,試求出當(dāng)t為何值時,△HE1E為等腰三角形?
(1)
(2)
(
)(3)
或2![]()
解析試題分析:1)∵折疊后BE與EA所在直線重合![]()
∴EF⊥EA
又Rt△ABC中AC=BC
∴∠CAB=45°
∴EF=EA
∵A(2,0)
∴OA=OE=2 , AE=
∴折痕EF=
(2)
(
)
S=4 (
)
(
)
(
)
(3)![]()
=![]()
![]()
![]()
當(dāng)E1E=EE1時
4t2-8![]()
![]()
∴t=![]()
當(dāng)E1E=EH時,![]()
![]()
![]()
當(dāng)E1H=EH時![]()
或0
綜上:
或2![]()
考點:二次函數(shù)的綜合題
點評:此題將用待定系數(shù)法求二次函數(shù)解析式、動點問題和最小值問題相結(jié)合,有較大的思維跳躍,考查了同學(xué)們的應(yīng)變能力和綜合思維能力,是一道好題.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 3 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com