分析 (1)由等邊三角形的性質(zhì)得出CQ=QD=CD=PD=CP,即可得出結(jié)論;
(2)由(1)得出△PDQ是等腰三角形,且DC垂直平分PQ,由垂直平分線的性質(zhì)易得DE、DQ的值,進(jìn)而在RT△DEQ中,由勾股定理可求得QE的值,可得答案.
解答 (1)證明:四邊形CPDQ是菱形;理由如下:
∵正方形ABCD的邊長(zhǎng)為3cm,
∴CD=3cm,
∵△PCD和△QCD是等邊三角形,
∴CQ=QD=CD=PD=CP,
∴四邊形CPDQ是菱形;
(2)解:由(1)得:△PDQ是等腰三角形,且DC垂直平分PQ,
∴DE=$\frac{1}{2}$CD=1.5cm,DQ=3cm;
在Rt△DEQ中,QE=$\sqrt{{3}^{2}-(\frac{3}{2})^{2}}$=$\frac{3}{2}\sqrt{3}$,
∴PQ=2QE=3$\sqrt{3}$(cm).
點(diǎn)評(píng) 本題考查了菱形的判定與性質(zhì)、等邊三角形的性質(zhì)、正方形的性質(zhì);熟練掌握等邊三角形的性質(zhì),由勾股定理求出QE是解決問(wèn)題(2)的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3 | B. | -3 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com