【題目】在四邊形ABCD中,∠ABC=∠DCB=90°,AB=BC.過點(diǎn)B作BF⊥AD,垂足為點(diǎn)F,
(1)求證:∠DAB=∠FBC;
(2)點(diǎn)E為線段CD上的一點(diǎn),連接AE交BF于G,若∠BAE+2∠EAD=90°,AG=1,AB=5,求線段CD的長.
![]()
【答案】(1)證明見解析;(2)CD=4.
【解析】
(1)由余角的性質(zhì)可得結(jié)論;
(2)如圖,過點(diǎn)A作AH⊥CD,延長BF交AH于M,可證四邊形ABCH是正方形,可得AB=CH=5,由“ASA”可證△ABM≌△AHD,△AGF≌△AMF,可得HD=AM,AM=AG=1,即可求解.
證明:(1)∵BF⊥AD,
∴∠AFB=90°,
∴∠DAB+∠ABF=90°,
∵∠ABC=90°,即∠ABF+∠FBC=90°,
∴∠DAB=∠FBC;
(2)如圖,過點(diǎn)A作AH⊥CD,垂足為H,延長BF交AH于M,
![]()
∵AH⊥CD,∠ABC=∠DCB=90°,
∴四邊形ABCH是矩形,
又∵AB=BC,
∴矩形ABCH是正方形,
∴AB=CH=5,
∵∠BAE+2∠EAD=90°,∠BAE+∠EAD+∠DAH=90°,∠BAE+∠DAE+∠ABM=90°
∴∠DAH=∠EAD=∠ABM,
又AB=AH,∠BAM=∠H=90°,
∴△ABM≌△HAD(ASA)
∴HD=AM,
∵∠DAE=∠DAH,AF=AF,∠AFG=∠AFM=90°,
∴△AGF≌△AMF(ASA)
∴AM=AG=1,
∴HD=1,
∴CD=CH﹣DH=4.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形網(wǎng)格中,△ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)把△ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;
(2)把△A1B1C1繞點(diǎn)A1按逆時針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2;
(3)如果網(wǎng)格中小正方形的邊長為1,求點(diǎn)B經(jīng)過(1)、(2)變換的路徑總長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延長線上.請解答下列問題:
![]()
(1)圖中與∠DBE相等的角有: ;
(2)直接寫出BE和CD的數(shù)量關(guān)系;
(3)若△ABC的形狀、大小不變,直角三角形BEC變?yōu)閳D2中直角三角形BED,∠E=90°,且∠EDB=
∠C,DE與AB相交于點(diǎn)F.試探究線段BE與FD的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形紙片
中,沿過
點(diǎn)的直線折疊這個三角形,使點(diǎn)
落在
邊上的點(diǎn)
處,折痕為
,則下列結(jié)論:
![]()
①
平分
;
②
;
③若
,
,
,則
的周長為7;
④
;
⑤若
平分
與
交于點(diǎn)
,當(dāng)
時,
.其中結(jié)論正確的有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形
中,
,點(diǎn)
是
的中點(diǎn)
情景引入:
(1)如圖1,若
是
的平分線,試判斷
,
,DC之間的等量關(guān)系.
解決此問題可以用如下方法:延長
交
的延長線于點(diǎn)
,證明
得到
,從而把
,
,
轉(zhuǎn)化在一個三角形中即可判斷
,
,
之間的等量關(guān)系為
,試證明該結(jié)論;
![]()
問題探究:
(2)如圖2,點(diǎn)
是
的延長線上一點(diǎn),連
,若
恰好是
的平分線,試探究
,
,
之間的等量關(guān)系,并證明你的結(jié)論.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,正方形DEFG的頂點(diǎn)D,G分別在AB,AC上,頂點(diǎn)E,F(xiàn)在BC上.若△ADG、△BED、△CFG的面積分別是1、3、1,則正方形的邊長為( )
![]()
A.
B.
C. 2 D. 2![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將任意一個等腰直角三角板△ABC放至平面直角坐標(biāo)系xOy中,直角頂點(diǎn)A(a,0)在x軸的負(fù)半軸,點(diǎn)B(0,b)在y軸的正半軸,點(diǎn)C落在第二象限,
(1)若
=﹣b2+4b﹣4,求C點(diǎn)坐標(biāo);
(2)如圖2,再將任意的一個等腰直角三角板△DEF放至平面直角坐標(biāo)系xOy中,點(diǎn)E在x軸的正半軸上,F在y軸的負(fù)半軸上,直角頂點(diǎn)D落在第四象限,設(shè)點(diǎn)G為BC的中點(diǎn),證明:點(diǎn)D,O,G三點(diǎn)剛好在同一條直線上;
(3)已知a=﹣4,b<4.如圖3,點(diǎn)O關(guān)于直線AB的對稱點(diǎn)為點(diǎn)H,AH交線段BC于點(diǎn)P,PR⊥x軸于點(diǎn)R,求△APR的周長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圓桌面(桌面中間有一個直徑為0.4m的圓洞)正上方的燈泡(看作一個點(diǎn))發(fā)出的光線照射平行于地面的桌面后,在地面上形成如圖所示的圓環(huán)形陰影.已知桌面直徑為1.2m,桌面離地面1m,若燈泡離地面3m,則地面圓環(huán)形陰影的面積是( )
![]()
A. 0.324πm2 B. 0.288πm2 C. 1.08πm2 D. 0.72πm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:一般情形下等式
=1不成立,但有些特殊實(shí)數(shù)可以使它成立,例如:x=2,y=2時,
=1成立,我們稱(2,2)是使
=1成立的“神奇數(shù)對”.請完成下列問題:
(1)數(shù)對(
,4),(1,1)中,使
=1成立的“神奇數(shù)對”是 ;
(2)若(5﹣t,5+t)是使
=1成立的“神奇數(shù)對”,求t的值;
(3)若(m,n)是使
=1成立的“神奇數(shù)對”,且a=b+m,b=c+n,求代數(shù)式(a﹣c)2﹣12(a﹣b)(b﹣c)的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com