在等腰梯形ABCD中,
且AD=
,∠B=45°.直角三角板含
角的頂點(diǎn)E在邊BC上移動(dòng),一直角邊始終經(jīng)過點(diǎn)A,斜邊與CD交于點(diǎn)F.若
是以AB為腰的等腰三角形,則CF的長(zhǎng)等于 。![]()
![]()
解析【考查知識(shí)點(diǎn)】等腰梯形的性質(zhì)
【思路分析】首先理解題意,得出此題應(yīng)該分兩種情況進(jìn)行分析,分別是AB=AE,AB=BE,從而得到最后答案
解:根據(jù)已知條件可得,![]()
① 當(dāng)AB=AE時(shí),如圖,
∠B=45°,∠AEB=45°,AE=AB=3,
則在Rt△ABE中,
,
故
.
易得△FEC為等腰直角三角形,
故
=2.
②當(dāng)AB=BE時(shí),
∵∠B+∠BAE=45°+∠CEF,∠B=45°,
∴∠CEF=∠AEB,
∵∠B=∠C,
∴△ABE∽△ECF,
∴
,
∴
,
∴
;
故答案為:![]()
【點(diǎn)評(píng)】此題主要考查了等腰梯形的性質(zhì),以及等腰直角三角形的性質(zhì),綜合性較強(qiáng)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com