小明是積極思考,喜歡探究問題的同學(xué)。一天,如圖1,他將直角三角板ABC(∠ACB=30°,∠ABC=60°)和直角三角板ADE(∠DAE=∠DEA=45°)擺放在一起;如圖2,固定三角板ABC,將三角板ADE繞點(diǎn)A順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為
![]()
(1)當(dāng)
_____時,AD∥BC,在圖3中畫出相應(yīng)圖形;
![]()
(2)若當(dāng)三角板ADE繞點(diǎn)A順時針方向旋轉(zhuǎn)過程中,兩三角板某一邊平行(不共線)。例如,如圖4,
,此時DE∥BC,請你寫出除(1)和
情況以外,兩三角板某一邊平行(不共線)時,
的所有可能的度數(shù)________________.
![]()
(1)15°,如下圖;(2)45°,135°,150°
![]()
【解析】
試題分析:(1)根據(jù)AD∥BC,再根據(jù)三角板的度數(shù)即可求出α的度數(shù);
(2)要分5種情況進(jìn)行討論,分別畫出圖形,再分別計(jì)算出度數(shù)即可.
解:(1)∵AD∥BC,
∴∠FGC=∠D=90°,
∵∠C=30°,
∴∠AFD=∠CFG=60°,
∴∠DAF=30°,
∵∠DAE=45°,
∴∠CAE=15°,
∴當(dāng)α為 15度時,AD∥BC
;
(2)當(dāng)△ADE的一邊與△ABC的某一邊平行(不共線)時,旋轉(zhuǎn)角α的所有可能的度數(shù)是:15°,45°,105°,135°,150°;
![]()
考點(diǎn):旋轉(zhuǎn)的性質(zhì)
點(diǎn)評:解題的關(guān)鍵是熟練掌握旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)變化前后,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等以及每一對對應(yīng)點(diǎn)與旋轉(zhuǎn)中心連線所構(gòu)成的旋轉(zhuǎn)角相等.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com