欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 初中數學 > 題目詳情
如圖①,△ABC中,∠ABC=∠ACB,D是底邊BC上的一點;
(1)在AC上取一點E,畫△ADE,使∠ADE=∠AED=50°,∠2=20°,求∠1的度數;
(2)如圖①,將題(1)中的條件“使∠ADE=∠AED=50°,∠2=20°”改為“∠ADE=∠AED”,試猜想:∠1與∠2的數量關系,并說明理由;
(3)如圖②,延長AD到F,連結BF、FC,使∠ABF=∠AFB,∠AFC=∠ACF,試猜想:∠1與∠2、∠3與∠4之間的關系,并選其中一個進行證明.
分析:(1)求出∠C,求出∠BAC,求出∠DAE,代入∠1=∠BAC-∠DAC求出即可.
(2)根據三角形外角性質求出∠ADC=∠1+∠B,∠AED=∠2+∠C,即可求出答案.
(3)∠1=2∠2,根據三角形內角和定理求出∠ACF和∠ACB,根據∠2=∠ACF-∠ACB求出即可.
解答:解:(1)∵∠AED=∠2+∠C,∠ADE=∠AED=50°,∠2=20°,
∴∠C=30°,∠DAC=180°-∠ADE-∠AED=80°,
∵∠ABC=∠ACB,
∴∠ABC=30°
∴∠BAC=180°-30°-30°=120°,
∴∠1=∠BAC-∠DAC=120°-80°=40°;

(2)∵∠2+∠ACB=∠AED,∠1+∠B=∠2+∠ADE,∠ADE=∠AED,
∴∠2+∠ACB=∠1+∠B-∠2,
∵∠B=∠ACB,
∴∠2=∠1-∠2,
∴∠1=2∠2;

(3)∠3=2∠4,∠1=2∠2,
證明:如圖2,∵∠ACF+∠AFC+∠FAC=180°,∠ABC+∠ACB+∠BAC=180°,∠AFC=∠ACF,∠ABC=∠ACB,
∴∠ACF=
1
2
(180°-∠FAC)=90°-
1
2
∠3,∠ACB=
1
2
(180°-∠BAC)=90°-
1
2
(∠1+∠3),
∴∠2=∠ACF-∠ACB=(90°-
1
2
∠3)-(90°-
1
2
∠1-
1
2
∠3)=
1
2
∠1,
即∠1=2∠2.
點評:本題考查了三角形內角和定理和三角形外角性質的應用,主要考查學生的推理能力.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

17、如圖,在△ABC中,AB=AC,AD是△ABC的平分線,DE⊥AB,DF⊥AC,垂足分別是E,F.則下面結論中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的點到B、C兩點距離相等;④圖中共有3對全等三角形,正確的有:
①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

8、如圖,在△ABC中,AB=20cm,AC=12cm,點P從點B出發(fā)以每秒3cm的速度向點A運動,點Q從點A同時出發(fā)以每秒2cm的速度向點C運動,其中一個動點到達端點時,另一個動點也隨之停止運動,當△APQ是等腰三角形時,運動的時間是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,AB=AC,∠BAC=100°,MP、NO分別垂直平分AB、AC,求∠1,∠2的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

19、如圖,在△ABC中,∠C=90°,DE⊥AB于E,DF⊥BC于F.求證:△DEH∽△BCA.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,Rt△ABC中,DC是斜邊AB上的中線,EF過點C且平行于AB.若∠BCF=35°,則∠ACD的度數是(  )
A、35°B、45°C、55°D、65°

查看答案和解析>>

同步練習冊答案