分析 (1)根據(jù)直線的解析式可確定A點(diǎn)的坐標(biāo),然后將A點(diǎn)的坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)的值;
(2)聯(lián)立兩個(gè)函數(shù)的解析式,即可求得點(diǎn)B的坐標(biāo),
(3)設(shè)直線與y軸的交點(diǎn)為C,根據(jù)直線的解析式即可得到C點(diǎn)的坐標(biāo),也就求得了OC的長,以O(shè)C為底,A、B橫坐標(biāo)差的絕對(duì)值為高,即可求得△AOB的面積.
解答 解:(1)先將點(diǎn)A(1,b)代入y=2x-3,得b=-1;
又因?yàn)辄c(diǎn)A(1,-1)過y=ax2的圖象,
所以將點(diǎn)A(1,-1)代入y=ax2,
得a=-1;
(2)由題意得2x-3=-x2
解之得x=1或x=-3;
所以點(diǎn)B的坐標(biāo)為(-3,-9);
(3)設(shè)C為直線與y軸的交點(diǎn),則C(0,-3);
∴S△AOB=$\frac{1}{2}$OC×|xA-xB|=$\frac{1}{2}$×3×(3+1)=6.
點(diǎn)評(píng) 此題主要考查了二次函數(shù)解析式的確定、函數(shù)圖象交點(diǎn)坐標(biāo)以及圖形面積的求法;
(1)函數(shù)圖象交點(diǎn)坐標(biāo)為兩函數(shù)解析式組成的方程組的解.
(2)不規(guī)則圖形的面積通常轉(zhuǎn)化為規(guī)則圖形的面積的和差.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com