【題目】已知拋物線
的頂點為點
.
(1)求證:不論
為何實數(shù),該拋物線與
軸總有兩個不同的交點;
(2)若拋物線的對稱軸為直線
,求
的值和
點坐標(biāo);
(3)如圖,直線
與(2)中的拋物線并于
兩點,并與它的對稱軸交于點
,直線
交直線
于點
,交拋物線于點
.求當(dāng)
為何值時,以
為頂點的四邊形為平行四邊形.
![]()
【答案】(1)詳見解析;(2)
,點
坐標(biāo)為
;(3)
或
或
時,可使得
為頂點的四邊形是平行四邊形.
【解析】
(1)從
的判別式出發(fā),判別式總大于等于3,而證得;
(2)根據(jù)拋物線的對稱軸
來求
的值;然后利用配方法把拋物線解析式轉(zhuǎn)化為頂點式,由此可以寫出點
的坐標(biāo);
(3)根據(jù)平行四邊形的性質(zhì)得到:
.
需要分類討論:①當(dāng)四邊形
是平行四邊形,
,通過解該方程可以求得
的值;
②當(dāng)四邊形
是平行四邊形,
,通過解該方程可以求得
的值.
解:(1)
,
∵不論
為何實數(shù),總有
,
,
∴無論
為何實數(shù),關(guān)于
的一元二次方程
總有兩個不相等的實數(shù)根,
∴無論
為何實數(shù),拋物線
與
軸總有兩個不同的交點.
(2)
拋物線的對稱軸為直線
,
,即
,
此時,拋物線的解析式為
,
∴頂點
坐標(biāo)為
;
(3)
為頂點的四邊形是平行四邊形,
四邊形
是平行四邊形(直線在拋物線的上方)或四邊形
(直線在拋物線的下方),如圖所示,
![]()
由已知
,
,
,
,
①當(dāng)四邊形
是平行四邊形,
,
整理得,
,
解得
(不合題意,舍去),
;
②當(dāng)四邊形
是平行四邊形,
,
整理得
,
解得,
,
綜上,
或
或
時,可使得
為頂點的四邊形是平行四邊形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 xOy中,反比例函數(shù) y
x 0 的圖象經(jīng)過點 A2,3 ,直線y ax , y
與反比例函數(shù) y
x 0 分別交于點 B,C兩點.
(1)直接寫出 k 的值 ;
(2)由線段 OB,OC和函數(shù) y
x 0 在 B,C 之間的部分圍成的區(qū)域(不含邊界)為 W.
① 當(dāng) A點與 B點重合時,直接寫出區(qū)域 W 內(nèi)的整點個數(shù) ;
② 若區(qū)域 W內(nèi)恰有 8個整點,結(jié)合函數(shù)圖象,直接寫出 a的取值范圍 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線交x軸于A,B兩點(A在B右邊),A(3,0),B(1,0)交y軸于C點,C(0,3),連接AC;
![]()
(1)求拋物線的解析式;
(2)P為拋物線上的一點,作PE⊥CA于E點,且CE=3PE,求P點坐標(biāo);
(3)將原拋物線向上平移1個單位拋物線的對稱軸交x軸于H點,過H作直線MH,NH,當(dāng)MH⊥NH時,求MN恒過的定點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】身高1.65米的兵兵在建筑物前放風(fēng)箏,風(fēng)箏不小心掛在了樹上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點B處,風(fēng)箏掛在建筑物上方的樹枝點G處(點G在FE的延長線上).經(jīng)測量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風(fēng)箏所在點G與建筑物頂點D及風(fēng)箏線在手中的點A在同一條直線上,點A距地面的高度AB=1.4米,風(fēng)箏線與水平線夾角為37°.
(1)求風(fēng)箏距地面的高度GF;
(2)在建筑物后面有長5米的梯子MN,梯腳M在距墻3米處固定擺放,通過計算說明:若兵兵充分利用梯子和一根米長的竹竿能否觸到掛在樹上的風(fēng)箏?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足為H,在CD上有點N滿足CN=CA,AN交圓O于點F,過點F的AC的平行線交CD的延長線于點M,交AB的延長線于點E.
(1)求證:EM是圓O的切線;
(2)若AC:CD=5:8,AN=3
,求圓O的直徑長度.
(3)在(2)的條件下,直接寫出FN的長度.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尼泊爾發(fā)生了里氏8.1級地震,某中學(xué)組織了獻愛心捐款活動,該校教學(xué)興趣小組對本校學(xué)生獻愛心捐款額做了一次隨機抽樣調(diào)查,并繪制了不完整的頻數(shù)分布表和頻數(shù)分布直方圖.如圖所示:
![]()
(1)a等于多少?b等于多少?
(2)補全頻數(shù)分布直方圖;若制成扇形統(tǒng)計圖,求捐款額在
之間的扇形圓心角的度數(shù);
(3)該校共有1600名學(xué)生,估計這次活動中愛心捐款額不低于20元的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,AB⊥x軸,垂足為A.反比例函數(shù)y=
(x>0)的圖象經(jīng)過點C,交AB于點D.已知AB=4,BC=
.
(1)若OA=4,求k的值;
(2)連接OC,若BD=BC,求OC的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)的一個數(shù)學(xué)興趣小組在本校學(xué)生中開展了主題為“霧霾知多少”的專題調(diào)查括動,采取隨機抽樣的方式進行問卷調(diào)查,問卷調(diào)查的結(jié)果分為“A.非常了解”、“B.比較了解”、“C.基本了解”、“D.不太了解”四個等級,將所得數(shù)據(jù)進行整理后,繪制成如下兩幅不完整的統(tǒng)計圖表,請你結(jié)合圖表中的信息解答下列問題
等級 | A | B | C | D |
頻數(shù) | 40 | 120 | 36 | n |
頻率 | 0.2 | m | 0.18 | 0.02 |
(1)表中m= ,n= ;
(2)扇形統(tǒng)計圖中,A部分所對應(yīng)的扇形的圓心角是 °,所抽取學(xué)生對丁霧霾了解程度的眾數(shù)是 ;
(3)若該校共有學(xué)生1500人,請根據(jù)調(diào)查結(jié)果估計這些學(xué)生中“比較了解”人數(shù)約為多少?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某中學(xué)學(xué)生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計,現(xiàn)從該校隨機抽取n名學(xué)生作為樣本,采用問卷調(diào)查的方式收集數(shù)據(jù)
參與問卷調(diào)查的每名學(xué)生只能選擇其中一項
,并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中提供的信息,解答下列問題:
![]()
補全條形統(tǒng)計圖;
若該校共有學(xué)生2400名,試估計該校喜愛看電視的學(xué)生人數(shù).
若調(diào)查到喜愛體育活動的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名,求恰好抽到2名男生的概率.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com