【題目】某園林專業(yè)戶計(jì)劃投資種植花卉及樹(shù)木,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植樹(shù)木的利潤(rùn)
與投資金額
成正比例關(guān)系,如圖1所示;種植花卉的利潤(rùn)
與投資金額
成二次函數(shù)關(guān)系,如圖2所示.(注:利潤(rùn)與投資金額的單位均為萬(wàn)元)
![]()
(1)分別求出利潤(rùn)
與
關(guān)于投資金額
的函數(shù)關(guān)系;
(2)如果這位專業(yè)戶以8萬(wàn)元資金投入種植花卉和樹(shù)木,設(shè)他投入種植花卉的金額是
萬(wàn)元,求這位專業(yè)戶能獲取的最大總利潤(rùn)是多少萬(wàn)元?
【答案】(1)
;
;(2)他能獲取的最大利潤(rùn)是32萬(wàn)元.
【解析】
(1)可根據(jù)圖象利用待定系數(shù)法求解函數(shù)解析式;
(2)根據(jù)總利潤(rùn)=樹(shù)木利潤(rùn)+花卉利潤(rùn),列出函數(shù)關(guān)系式,再求函數(shù)的最值.
解:(1)設(shè)
,由圖1所示,函數(shù)
的圖象過(guò)
,
∴
,
,
∴利潤(rùn)
關(guān)于投資量
的函數(shù)關(guān)系式是
;
∴設(shè)
,由圖2所示,函數(shù)
的圖象過(guò)
,
∴
,解得
,
∴利潤(rùn)
關(guān)于投資量
的函數(shù)關(guān)系式是
;
(2)設(shè)投入種植花卉的資金為
萬(wàn)元(
),總利潤(rùn)為
萬(wàn)元,
則投入種植樹(shù)木的資金為
萬(wàn)元,
∴
,
∵
,
,
∴當(dāng)
時(shí),
的最大值是32萬(wàn)元.
∴他能獲取的最大利潤(rùn)是32萬(wàn)元.
故答案為:(1)
;
;(2)他能獲取的最大利潤(rùn)是32萬(wàn)元.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于點(diǎn)E、F、G,過(guò)點(diǎn)D作⊙O的切線交BC于點(diǎn)M,切點(diǎn)為N,則DM的長(zhǎng)為( 。
![]()
A.
B.
C.
D. 2![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“了解”部分所對(duì)應(yīng)扇形的圓心角為 °;
(2)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為 人;
(3)若從對(duì)校園安全知識(shí)達(dá)到“了解”程度的3個(gè)女生A、B、C和2個(gè)男生M、N中分別隨機(jī)抽取1人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到女生A的概率.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】尺規(guī)作圖:
已知:∠AOB.
求作:射線OC,使它平分∠AOB.
作法:
(1)以O為圓心,任意長(zhǎng)為半徑作弧,交OA于D,交OB于E;
(2)分別以D、E為圓心,大于
DE的同樣長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)C;
(3)作射線OC.
所以射線OC就是所求作的射線.
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:連結(jié)CE,CD.
∵OE=OD, = ,OC=OC,
∴△OEC≌△ODC(依據(jù): ),
∴∠EOC=∠DOC,
即OC平分∠AOB.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)
,
的坐標(biāo)分別為
,
,過(guò)
,
,
三點(diǎn)作圓,點(diǎn)
在第一象限部分的圓上運(yùn)動(dòng),連結(jié)
,過(guò)點(diǎn)
作
的垂線交
的延長(zhǎng)線于點(diǎn)
,下列說(shuō)法:①
;②
;③
的最大值為10.其中正確的是( )
![]()
A. ①②B. ②③C. ①③D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,AB=6,BC=8.點(diǎn)P在矩形ABCD的內(nèi)部,點(diǎn)E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長(zhǎng)為數(shù)___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面的統(tǒng)計(jì)圖反映了我國(guó)最近十年間核電發(fā)電量的增長(zhǎng)情況,根據(jù)統(tǒng)計(jì)圖提供的信息,下列判斷合理的是( 。
![]()
A. 2011年我國(guó)的核電發(fā)電量占總發(fā)電量的比值約為1.5%
B. 2006年我國(guó)的總發(fā)電量約為25000億千瓦時(shí)
C. 2013年我國(guó)的核電發(fā)電量占總發(fā)電量的比值是2006年的2倍
D. 我國(guó)的核電發(fā)電量從2008年開(kāi)始突破1000億千瓦時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中A點(diǎn)的坐標(biāo)為(8,
) ,AB⊥
軸于點(diǎn)B, sin∠OAB =
,反比例函數(shù)
的圖象的一支經(jīng)過(guò)AO的中點(diǎn)C,且與AB交于點(diǎn)D.
(1)求反比例函數(shù)解析式;
(2)求四邊形OCDB的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是AB邊上的中線,E是CD的中點(diǎn),過(guò)點(diǎn)C作AB的平行線交AE的延長(zhǎng)線于點(diǎn)F,連接BF.
(1)求證:四邊形BDCF是菱形;
(2)當(dāng)Rt△ABC中的邊或角滿足什么條件時(shí)?四邊形BDCF是正方形,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com