【題目】跳繩時(shí),繩甩到最高處時(shí)的形狀是拋物線. 正在甩繩的甲、乙兩名同學(xué)拿繩的手間距AB為6米,到地面的距離AO和BD均為0. 9米,身高為1. 4米的小麗站在距點(diǎn)O的水平距離為1米的點(diǎn)F處,繩子甩到最高處時(shí)剛好通過她的頭頂點(diǎn)E. 以點(diǎn)O為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系, 設(shè)此拋物線的解析式為
.
(1)求該拋物線的解析式;
(2)如果身高為1. 85米的小華也想?yún)⒓犹K,問繩子能否順利從他頭頂越過?請說明理由;
(3)如果一群身高在1. 4米到1. 7米之間的人站在OD之間,且離點(diǎn)O的距離為t米, 繩子甩到最高處時(shí)必須超過他們的頭頂,請結(jié)合圖像,寫出t的取值范圍_______________.
![]()
【答案】(1)
;(2)繩子不能順利從他頭頂越過;(3)1<t<5.
【解析】
(1)選定拋物線上兩點(diǎn)E(1,1.4),B(6,0.9)坐標(biāo)代入求出解析式即可;
(2)將函數(shù)解析式配方成頂點(diǎn)式,得到函數(shù)的最大值,據(jù)此即可作出判斷;
(3)實(shí)質(zhì)上就是求y=1.4時(shí),對應(yīng)的x的兩個(gè)值,就是t的取值范圍.
解:(1)由題意得點(diǎn)E(1,1.4),B(6,0.9),代入
得
,解得:
,
∴所求的拋物線的解析式是
;
(2)∵
,
∵
,
∴x=3時(shí),y有最大值為1.8,
∵1.85>1.8,
∴繩子不能順利從他頭頂越過;
(3)身高在1. 4米到1. 7米之間的人站在OD之間,
∵1.4<1.7<1.8,
∴只需要計(jì)算1.4米身高的情況.
當(dāng)y=1.4時(shí),
,
解得
,
∴1<t<5,故答案為:1<t<5.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一個(gè)鈍角△ABC(其中∠ABC=120°)繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得△A1BC1,使得C點(diǎn)落在AB的延長線上的點(diǎn)C1處,連接AA1.
![]()
(1)寫出旋轉(zhuǎn)角的度數(shù);
(2)求證:∠A1AC=∠C1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點(diǎn)B作⊙O的切線,交DA的延長線于點(diǎn)E,連接BD,且∠E=∠DBC.
![]()
(1)求證:DB平分∠ADC;
(2)若EB=10,CD=9,tan∠ABE=
,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形
中,
,
,
,
是
的中點(diǎn),將
繞點(diǎn)
旋轉(zhuǎn),當(dāng)
(即
)與
交于一點(diǎn)
,
(
)同時(shí)與
交于一點(diǎn)
時(shí),點(diǎn)
,
和點(diǎn)
構(gòu)成
,在此過程中,
周長的最小值是__________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線
與雙曲線
(
)交于
,
兩點(diǎn),且點(diǎn)
的橫坐標(biāo)為6.
(1)求
的值;
(2)若雙曲線
(
)上一點(diǎn)
的縱坐標(biāo)為9,求
的面積;
(3)過原點(diǎn)
的另一條直線
交雙曲線
(
)于
,
兩點(diǎn)(
點(diǎn)在第一象限),若由點(diǎn)
,
,
,
為頂點(diǎn)組成的四邊形面積為96,求點(diǎn)
的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3),點(diǎn)P是直線BC下方拋物線上的任意一點(diǎn),過點(diǎn)P作平行于y軸的直線PM,交線段BC于M,當(dāng)△PCM是以PM為腰的等腰三角形時(shí),點(diǎn)P的坐標(biāo)是( 。
![]()
A.(2,-3)或(
+1,—2)B.(2,-3)或(
,-1-2
)
C.(2,-3)或(
,-1-2
)D.(2,-3)或(3-
,2-4
)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的一元二次方程x2+2x+k+1=0的實(shí)數(shù)解是x1和x2.
(1)求k的取值范圍;
(2)如果x1+x2﹣x1x2<﹣1且k為整數(shù),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過點(diǎn)D,分別交AC、AB于點(diǎn)E. F.
(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若BD=2
,BF=2,求⊙O的半徑.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com