欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知:如圖,M是線段BC的中點,BC=4,分別以MB、MC為邊在線段BC的同側(cè)作等邊△BAM、等邊△MCD,連接AD.
(1)求證:四邊形ABCD是等腰梯形;
(2)將△MDC繞點M逆時針方向旋轉(zhuǎn)α(60°<α<120°),得到△MD′C′,MD′交AB于點E,MC′交AD于點F,連接EF.
①求證:EF∥D′C′;
②△AEF的周長是否存在最小值?如果不存在,請說明理由;如果存在,請計算出△AEF周長的最小值.

【答案】分析:(1)可求出∠AMD=60°,MA=MD,繼而得出△AMD是等邊三角形,根據(jù)∠ADM=∠DMC=60°,可判斷AD∥BC,從而可得出結(jié)論;
(2)先證△MDF全等于△MAE,可得△MEF為等邊三角形,即得EF∥D´C´;
(3)由①可得AE+AF=AB,為定值,只需滿足EF最小即可,由①可得△MEF為等邊三角形,EF=ME,故只需ME最小即可,顯然當(dāng)ME⊥AB的時候ME最。
解答:解:(1)∵M(jìn)是線段BC的中點,
∴BM=MC,
又∵△BAM、△MCD是等邊三角形,
∴∠AMB=∠DMC=60°,MA=MD,
∴△MAD為等邊三角形,
∴∠ADM=∠DMC=60°,
∴AD∥BC,
又∵AB=BM=MC=DC,
∴四邊形ABCD為等腰梯形. 

(2)①∵∠DMF+∠AMF=60°,∠AME+∠AMF=60°,
∴∠AME=∠DMF,
∵在△MAE和△MDF中,
,
∴△MAE≌△MDF(AAS),
∴ME=MF,
∴∠EMF=∠AMF+∠AME=∠AMF+∠DMF=∠AMD=60°,
∴△MEF為等邊三角形,
∴∠FEM=∠C'D'M=60°,
∴EF∥D′C′.
②存在最小值.
由①得,AE+AF=AB,為定值,只需滿足EF最小即可,
由①得,△MEF是等邊三角形,EF=ME,只需滿足ME最小即可,
顯然當(dāng)ME⊥AB時取得最小,
由等邊三角形的性質(zhì)可得:此時ME=2
故△AEF的周長最小值等于
點評:本題考查了四邊形綜合題,涉及了全等三角形的判定與性質(zhì)、旋轉(zhuǎn)的性質(zhì)及等腰梯形的判定,解答本題要求我們熟練掌握各個知識點,并能將所學(xué)知識融會貫通.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,D是線段AB上的點,以BD為直徑作⊙O,AP切⊙O于E,BC⊥AF于C,連接DE精英家教網(wǎng)、BE.
(1)求證:BE平分∠ABC;
(2)若D是AB中點,⊙O直徑BD=3
3
,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•北京二模)已知:如圖,P是線段AB的中點,線段MN經(jīng)過點P,MA⊥AB,NB⊥AB.
求證:AM=BN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•大豐市一模)已知:如圖,M是線段BC的中點,BC=4,分別以MB、MC為邊在線段BC的同側(cè)作等邊△BAM、等邊△MCD,連接AD.
(1)求證:四邊形ABCD是等腰梯形;
(2)將△MDC繞點M逆時針方向旋轉(zhuǎn)α(60°<α<120°),得到△MD′C′,MD′交AB于點E,MC′交AD于點F,連接EF.
①求證:EF∥D′C′;
②△AEF的周長是否存在最小值?如果不存在,請說明理由;如果存在,請計算出△AEF周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,C是線段AB的中點,∠A=∠B,∠ACE=∠BCD.
求證:AD=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,M是線段BC的中點,BC=4,分別以MB、MC為邊在線段BC的同側(cè)作等邊△BAM、等邊△MCD,連接AD

1.求證:四邊形ABCD是等腰梯形

2.將△MDC繞點M逆時針方向旋轉(zhuǎn)α(60º<α<120º),得到△MD´C´,MD´交AB于點E,MC´交AD于點F,連接EF.

①求證:EF∥D´C´;

②△AEF的周長是否存在最小值?如果不存在,請說明理由;如果存在,請計算出△AEF周長的最小值.

 

查看答案和解析>>

同步練習(xí)冊答案