【題目】閱讀第①小題的計(jì)算方法,再計(jì)算第②小題.
①–5
+(–9
)+17
+(–3
)
解:原式=[(–5)+(–
)]+[(–9)+(–
)]+(17+
)+[(–3+(–
)]
=[(–5)+(–9)+(–3)+17]+[(–
)+(–
)+(–
)+
]
=0+(–1
)
=–1
.
上述這種方法叫做拆項(xiàng)法.靈活運(yùn)用加法的交換律、結(jié)合律可使運(yùn)算簡便.
②仿照上面的方法計(jì)算:(﹣2000
)+(﹣1999
)+4000
+(﹣1
)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B是反比例函數(shù)y=
(k>0,x>0)圖象上的兩點(diǎn),BC∥x軸,交y軸于點(diǎn)C,動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運(yùn)動(dòng),終點(diǎn)為C,過P作PM⊥x軸,垂足為M.設(shè)三角形OMP的面積為S,P點(diǎn)運(yùn)動(dòng)時(shí)間為t,則S關(guān)于x的函數(shù)圖象大致為( )
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)6+(﹣
)﹣2﹣(﹣1.5)
(2)10+[
﹣(﹣1+1
)]×6
(3)﹣2÷
×(
)2
(4)﹣32﹣|﹣6|﹣3×(﹣
)+(﹣2)2÷![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2-2mx-3 (m≠0)與y軸交于點(diǎn)A,其對稱軸與x軸交于點(diǎn)B頂點(diǎn)為C點(diǎn).
(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)若∠ACB=45°,求此拋物線的表達(dá)式;
(3)在(2)的條件下,垂直于
軸的直線
與拋物線交于點(diǎn)P(x1,y1)和Q(x2,y2),與直線AB交于點(diǎn)N(x3,y3),若x3<x1<x2,結(jié)合函數(shù)的圖象,直接寫出x1+x2+x3的取值范圍為.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(a,b),B(c,0)是x軸正半軸上一點(diǎn),∠ABO=30°,若
與|2﹣a|互為相反數(shù).
![]()
(1)求c的值;
(2)如圖2,AC⊥AB交x軸于C,以AC為邊的正方形ACDE的對角線AD交x軸于F.
①求證:BE=2OC;
②記BF2﹣OF2=m,OC2=n,求
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,AM是△ACD的外角∠DAF的平分線.
![]()
(1)求證:AM是⊙O的切線;
(2)若∠D = 60°,AD = 2,射線CO與AM交于N點(diǎn),請寫出求ON長的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,平面直角坐標(biāo)系
中點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
,拋物線經(jīng)過
、
、
三點(diǎn),連接
,線段
交
軸于點(diǎn)
.
![]()
(1)求點(diǎn)
的坐標(biāo);
(2)求拋物線的函數(shù)解析式;
(3)點(diǎn)
為線段
上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)
、
重合),直線
與拋物線交于
、
兩點(diǎn)(點(diǎn)
在
軸右側(cè)),連接
,當(dāng)四邊形
的面積最大時(shí),求點(diǎn)
的坐標(biāo)并求出四邊形
面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)k值相同時(shí),我們把正比例函數(shù)
與反比例函數(shù)
叫做“關(guān)聯(lián)函數(shù)”.
![]()
(1)如圖,若k>0,這兩個(gè)函數(shù)圖象的交點(diǎn)分別為A,B,求點(diǎn)A,B的坐標(biāo)(用k表示);
(2)若k=1,點(diǎn)P是函數(shù)
在第一象限內(nèi)的圖象上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與B重合),設(shè)點(diǎn)P的坐標(biāo)為(
),其中m>0且m≠2.作直線PA,PB分別與x軸交于點(diǎn)C,D,則△PCD是等腰三角形,請說明理由;
(3)在(2)的基礎(chǔ)上,是否存在點(diǎn)P使△PCD為直角三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點(diǎn),過點(diǎn)E作
,與AC、DC分別交于點(diǎn)
為CG的中點(diǎn),連結(jié)DE、EH、DH、
下列結(jié)論:
;
≌
;
;
若
,則
其中結(jié)論正確的有![]()
![]()
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com