【題目】點P、Q分別是邊長為4cm的等邊
的邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都是
,設運動時間為t秒.
連接AQ、CP交于點M,則在P、Q運動的過程中,
變化嗎:若變化,則說明理由,若不變,則求出它的度數(shù);
連接PQ,
當
秒時,判斷
的形狀,并說明理由;
當
時,則
______秒
直接寫出結(jié)果![]()
![]()
【答案】(1)在P、Q運動的過程中,∠CMQ不變,∠CMQ=60°;(2)①△BPQ是等邊三角形;②
.
【解析】
(1)先證明△ABQ≌△CAP,得到∠BAQ=∠ACP,根據(jù)∠BAQ+∠QAC=60°,然后利用三角形外角的性質(zhì)即可得出結(jié)論;
(2)①當t=2秒時,AP=BQ=2,PB=4﹣2=2,可知△BPQ是等邊三角形;
②當PQ⊥BC時,∠B=60°,根據(jù)直角三角形30°所對直角邊等于斜邊一半的性質(zhì)列等量關(guān)系,即可求出時間t.
(1)∵△ABC為等邊三角形,
∴AB=AC,∠B=∠PAC=60°,
∵點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s,
∴AP=BQ,
在△APC和△BQA中
,
∴△APC≌△BQA(SAS),
∴∠BAQ=∠ACP,
∴∠CMQ=∠CAQ+∠ACP=∠BAQ+∠CAQ=∠BAC=60°,
∴在P、Q運動的過程中,∠CMQ不變,∠CMQ=60°;
故答案為:在P、Q運動的過程中,∠CMQ不變,∠CMQ=60°.
(2)①∵運動時間為ts,則AP=BQ=t,
∴PB=4﹣t,
當t=2秒時,AP=BQ=2,PB=4﹣2=2,∴AP=BQ=PB,
∴△BPQ是等邊三角形;
故答案為:△BPQ是等邊三角形.
②∵運動時間為ts,則AP=BQ=t,∴PB=4﹣t,
∵PQ⊥BC,∴∠PQB=90°,
∵∠B=60°,∴PB=2BQ,
∴4﹣t=2t,解得t=
,
故答案為:t=
.
科目:初中數(shù)學 來源: 題型:
【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?
(3)設該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC在x軸正半軸上,點A在第一象限,延長AB交y軸負半軸于點D,延長CA到點E,使AE=AC,雙曲線y=
(x>0)的圖象過點E.若△BCD的面積為2
,則k的值為( )![]()
A.4 ![]()
B.4
C.2 ![]()
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點B在線段AC上,點D在線段AB上.
(1)如圖1,若AB=6cm,BC=4cm,D為線段AC的中點,求線段DB的長度;
(2)如圖2,若BD=
AB=
CD,E為線段AB的中點,EC=12cm,求線段AC的長度.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線C1:y=﹣
x2+bx+c的對稱軸是x=2,且經(jīng)過點(6,0).![]()
(1)求拋物線C1的解析式;
(2)將拋物線C1向下平移2個單位后得到拋物線C2 , 如圖,直線y=kx﹣2k+1交拋物線C2于A,B兩點(點A在點B的左邊),交拋物線C2的對稱軸于點C,M(xA , 3),xA表示點A橫坐標,求證:AC=AM;
(3)在(2)的條件下,請你參考(2)中的結(jié)論解決下列問題:
①若CM=AM,求
的值;
②請你探究:在拋物線C2上是否存在點P,使得PO+PC取得最小值?如果存在,求出點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,
的三個頂點都在格點上,點
的坐標為
.
![]()
(1)畫出
關(guān)于
軸對稱的
,并寫出點
的坐標
.
(2)畫出
繞原點
旋轉(zhuǎn)后
得到的
,并寫出
點的坐標
.
(3)
是否為直角三角形?答 (填是或者不是).
(4)利用格點圖,畫出
邊上的高
,并求出
的長,
.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x、y的方程組
,給出下列結(jié)論:
①
是方程組的解;②無論a取何值,x,y的值都不可能互為相反數(shù);
③當a=1時,方程組的解也是方程x+y=4﹣a的解;④x,y的都為自然數(shù)的解有4對.
其中正確的個數(shù)為( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,對角線AC=6,BD=8,M、N分別是BC、CD的中點,P是線段BD上的一個動點,則PM+PN的最小值是 ____.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:
小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如
.善于思考的小明進行了以下探索:
設
(其中
、
、
、
均為整數(shù)),則有
.
,
.這樣小明就找到了一種把類似
的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當
、
、
、
均為正整數(shù)時,若
,用含
、
的式子分別表示
、
,得:
,
;
(2)利用所探索的結(jié)論,找一組正整數(shù)
、
、
、
填空:
;
(3)若
,且
、
、
均為正整數(shù),求
的值?
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com