【題目】辰星旅游度假村有甲種風(fēng)格客房15間,乙種風(fēng)格客房20間.按現(xiàn)有定價(jià):若全部入住,一天營(yíng)業(yè)額為8500元;若甲、乙兩種風(fēng)格客房均有10間入住,一天營(yíng)業(yè)額為5000元.
(1)求甲、乙兩種客房每間現(xiàn)有定價(jià)分別是多少元?
(2)度假村以乙種風(fēng)格客房為例,市場(chǎng)情況調(diào)研發(fā)現(xiàn):若每個(gè)房間每天按現(xiàn)有定價(jià),房間會(huì)全部住滿;當(dāng)每個(gè)房間每天的定價(jià)每增加20元時(shí),就會(huì)有兩個(gè)房間空閑.如果游客居住房間,度假村需對(duì)每個(gè)房間每天支出80元的各種費(fèi)用.當(dāng)每間房間定價(jià)為多少元時(shí),乙種風(fēng)格客房每天的利潤(rùn)
最大,最大利潤(rùn)是多少元?
【答案】(1)甲、乙兩種客房每間現(xiàn)有定價(jià)分別是300元、200元;(2)每間房間定價(jià)為240元時(shí),乙種風(fēng)格客房每天的利潤(rùn)
最大,最大利潤(rùn)是2560元.
【解析】
(1)根據(jù)題意“若全部入住,一天營(yíng)業(yè)額為8500元;若甲、乙兩種風(fēng)格客房均有10間入住,一天營(yíng)業(yè)額為5000元”設(shè)未知數(shù)列出相應(yīng)的二元一次方程組,解方程組即可解答本題;
(2)根據(jù)題意列出
關(guān)于乙種房?jī)r(jià)的函數(shù)關(guān)系式,然后根據(jù)二次函數(shù)的性質(zhì)即可解答本題.
解:設(shè)甲、乙兩種客房每間現(xiàn)有定價(jià)分別是
元、
元,
根據(jù)題意,得:
,
解得
,
答:甲、乙兩種客房每間現(xiàn)有定價(jià)分別是300元、200元;
(2)設(shè)每天的定價(jià)增加了
個(gè)20元,則有
個(gè)房間空閑,
根據(jù)題意得:![]()
,
∵
,
∴當(dāng)
時(shí),
取得最大值,最大值為2560,此時(shí)房間的定價(jià)為
元.
答:當(dāng)每間房間定價(jià)為240元時(shí),乙種風(fēng)格客房每天的利潤(rùn)
最大,最大利潤(rùn)是2560元.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)
.
(1)用配方法求出該函數(shù)圖象的頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(2)在如圖所示的平面直角坐標(biāo)系中畫(huà)出該函數(shù)的大致圖象.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有個(gè)填寫(xiě)運(yùn)算符號(hào)的游戲:在“
”中的每個(gè)□內(nèi),填入
中的某一個(gè)(可重復(fù)使用),然后計(jì)算結(jié)果.
(1)計(jì)算:
;
(2)若請(qǐng)推算
□內(nèi)的符號(hào);
(3)在“
”的□內(nèi)填入符號(hào)后,使計(jì)算所得數(shù)最小,直接寫(xiě)出這個(gè)最小數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=
的圖象交于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)過(guò)點(diǎn)B作BC⊥x軸,垂足為C,連接AC,求△ABC的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為2,將射線AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α,所得射線與線段BD交于點(diǎn)M,作CE⊥AM于點(diǎn)E,點(diǎn)N與點(diǎn)M關(guān)于直線CE對(duì)稱,連接CN.
(1)如圖,當(dāng)0°<α<45°時(shí):
①依題意補(bǔ)全圖;
②用等式表示∠NCE與∠BAM之間的數(shù)量關(guān)系:___________;
(2)當(dāng)45°<α<90°時(shí),探究∠NCE與∠BAM之間的數(shù)量關(guān)系并加以證明;
(3)當(dāng)0°<α<90°時(shí),若邊AD的中點(diǎn)為F,直接寫(xiě)出線段EF長(zhǎng)的最大值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次數(shù)學(xué)課上,張老師出示了一個(gè)題目:“如圖,ABCD的對(duì)角線相交于點(diǎn)O,過(guò)點(diǎn)O作EF垂直于BD交AB,CD分別于點(diǎn)F,E,連接DF,
請(qǐng)根據(jù)上述條件,寫(xiě)出一個(gè)正確結(jié)論
”其中四位同學(xué)寫(xiě)出的結(jié)論如下:
小青:
;小何:四邊形DFBE是正方形;
小夏:
;小雨:
.
這四位同學(xué)寫(xiě)出的結(jié)論中不正確的是
![]()
![]()
A. 小青 B. 小何 C. 小夏 D. 小雨
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知
,函數(shù)
的圖象與
軸有
個(gè)交點(diǎn),函數(shù)
的圖象與
軸有
個(gè)交點(diǎn),則
與
的數(shù)量關(guān)系是( )
A.
B.
或![]()
C.
或
D.
或![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的口袋里裝有若干個(gè)除顏色外其余均相同的紅、黃、藍(lán)三種顏色的小球,其中紅球2個(gè),藍(lán)球1個(gè),若從中任意摸出一個(gè)球,摸到的球是紅球的概率為
.
(1)求袋中黃球的個(gè)數(shù);
(2)第一次任意摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,利用樹(shù)狀圖或劉表格求兩次摸到球的顏色是紅色與黃色的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,在Rt△ABC 中,
,D、E是斜邊BC上兩動(dòng)點(diǎn),且∠DAE=45°,將△
繞點(diǎn)
逆時(shí)針旋轉(zhuǎn)90后,得到△
,連接
.
(1)試說(shuō)明:△
≌△
;
(2)當(dāng)BE=3,CE=9時(shí),求∠BCF的度數(shù)和DE的長(zhǎng);
(3)如圖2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜邊BC所在直線上一點(diǎn),BD=3,BC=8,求DE2的長(zhǎng).
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com