欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

相似三角形有以下性質(zhì):

1.相似三角形對應(yīng)高的比、對應(yīng)中線的比和對應(yīng)角平分線的比都等于________

2.相似三角形周長的比等于________.相似三角形面積的比等于________

答案:相似比;相似比,相似比的平方
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

八年級數(shù)學學習合作小組在學過《圖形的相似》這一章后,發(fā)現(xiàn)可將相似三角形的定義、判定以及性質(zhì)拓展到矩形、菱形的相似中去.如:我們可以定義:“長和寬之比相等的矩形是相似矩形.”相似矩形也有以下的性質(zhì):相似矩形的對角線之比等于相似比,周長比等于相似比,面積比等于相似比的平方等等.請你參與這個學習小組,一同探索這類問題:
(1)寫出判定菱形相似的一種判定方法:若有一組角對應(yīng)相等(或兩組對角線對應(yīng)成比例),則這兩個菱形相似;
(2)如圖,將菱形ABCD沿著直線AC向右平移后得到菱形A′B′C′D′,試證明:四邊形A′FCE是菱形,且菱形ABCD∽菱形A′FCE;
(3)若AC=
2
,菱形A′FCE的面積是菱形ABCD面積的一半,求平移的距離AA′的長.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•南湖區(qū)二模)在特殊四邊形的復習課上,王老師出了這樣一道題:
如圖1,在?ABCD中,E、F、G、H分別為AB,BC,CD,DA邊上的動點,連接EG,HF相交于點O,且∠HOE=∠ADC,若AB=a,AD=b,試探究:EG與FH的數(shù)量關(guān)系.
經(jīng)過小組討論后,小聰建議分以下三步進行,請你解答:
(1)特殊情況,探索結(jié)論
當?ABCD是邊長為a的正方形時(如圖2),請寫出EG與FH的數(shù)量關(guān)系(不必證明);
(2)嘗試變題,再探思路
當?ABCD是邊長為a的菱形時(如圖3),EG與FH又有怎樣的數(shù)量關(guān)系呢?
小聰想:要求EG與FH的數(shù)量關(guān)系,就要構(gòu)成全等三角形或相似三角形,于是,分別過點G、H作GM⊥AB于點M,HN⊥BC于點N,在△HNF和△GME中,有∠GME=∠HNF=Rt∠,由菱形面積與性質(zhì)可得GM=HN,能否從已知條件得到∠MGE=∠NHF呢?請你根據(jù)小聰?shù)乃悸吠瓿山獯疬^程;
(3)特例啟發(fā),解答題目
猜想:原題中EG與FH的數(shù)量關(guān)系是
EG
FH
=
b
a
EG
FH
=
b
a
,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中數(shù)學單元提優(yōu)測試卷-相似多邊形的性質(zhì)(帶解析) 題型:解答題

八年級數(shù)學學習合作小組在學過《圖形的相似》這一章后,發(fā)現(xiàn)可將相似三角形的定義、判定以及性質(zhì)拓展到矩形、菱形的相似中去.如:我們可以定義:“長和寬之比相等的矩形是相似矩形.”相似矩形也有以下的性質(zhì):相似矩形的對角線之比等于相似比,周長比等于相似比,面積比等于相似比的平方等等.請你參與這個學習小組,一同探索這類問題:

(1)寫出判定菱形相似的一種判定方法:若有一組角對應(yīng)相等(或兩組對角線對應(yīng)成比例),則這兩個菱形相似;
(2)如圖,將菱形ABCD沿著直線AC向右平移后得到菱形A′B′C′D′,試證明:四邊形A′FCE是菱形,且菱形ABCD∽菱形A′FCE;
(3)若AC=,菱形A′FCE的面積是菱形ABCD面積的一半,求平移的距離AA′的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中數(shù)學單元提優(yōu)測試卷-相似多邊形的性質(zhì)(解析版) 題型:解答題

八年級數(shù)學學習合作小組在學過《圖形的相似》這一章后,發(fā)現(xiàn)可將相似三角形的定義、判定以及性質(zhì)拓展到矩形、菱形的相似中去.如:我們可以定義:“長和寬之比相等的矩形是相似矩形.”相似矩形也有以下的性質(zhì):相似矩形的對角線之比等于相似比,周長比等于相似比,面積比等于相似比的平方等等.請你參與這個學習小組,一同探索這類問題:

(1)寫出判定菱形相似的一種判定方法:若有一組角對應(yīng)相等(或兩組對角線對應(yīng)成比例),則這兩個菱形相似;

(2)如圖,將菱形ABCD沿著直線AC向右平移后得到菱形A′B′C′D′,試證明:四邊形A′FCE是菱形,且菱形ABCD∽菱形A′FCE;

(3)若AC=,菱形A′FCE的面積是菱形ABCD面積的一半,求平移的距離AA′的長.

 

查看答案和解析>>

同步練習冊答案