| A. | 4$\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 6 | D. | 2$\sqrt{5}$ |
分析 連接OE、OC,OC交EF于D,由圓周角定理得出$\widehat{AC}=\widehat{BC}$,如果連接OC交EF于D,根據(jù)垂徑定理可知:OC必垂直平分EF.由MN是△ABC的中位線,根據(jù)三角形中位線定理可得:OD=CD=$\frac{1}{2}$OC=2.在Rt△OED中求出ED的長,即可得出EF的值.
解答 解:如圖所示,![]()
∵PC是∠APB的角平分線,
∴∠APC=∠CPB,
∴弧AC=弧BC;
∴AC=BC;
∵AB是直徑,
∴∠ACB=90°.
即△ABC是等腰直角三角形.
連接OC,交EF于點(diǎn)D,則OC⊥AB;
∵M(jìn)N是△ABC的中位線,
∴MN∥AB;
∴OC⊥EF,OD=$\frac{1}{2}$OC=2.
連接OE,根據(jù)勾股定理,得:DE=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
∴EF=2ED=4$\sqrt{3}$.
故選:A.
點(diǎn)評(píng) 此題考查圓周角定理,垂徑定理,三角形的中位線,綜合運(yùn)用了圓周角定理及其推論發(fā)現(xiàn)等腰直角三角形,再進(jìn)一步根據(jù)等腰三角形的性質(zhì)以及中位線定理,求得EF的弦心距,最后結(jié)合垂徑定理和勾股定理求得弦長.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 由3x-2=2x+2,得x=4 | B. | 由-$\frac{1}{3}x=\frac{2}{3}$,得x=2 | ||
| C. | 由2x-3=3x,得x=3 | D. | 由3x-5=7,得3x=7-5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5$\sqrt{3}$ | B. | 2$\sqrt{5}$ | C. | $\frac{24}{5}$ | D. | $\frac{48}{5}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com