分析 (1)先判斷∠B1CQ=∠BCP1=45°,利用ASA即可證明△B1CQ≌△BCP1,從而得出結(jié)論.
(2)作P1D⊥CA于D,在RtADP1中,求出P1D,在Rt△CDP1中求出CP1,繼而可得出CQ的長(zhǎng)度.
(3)證明△AP1C∽△BEC,則有AP1:BE=AC:BC=$\sqrt{3}$:1,設(shè)AP1=x,則BE=$\frac{\sqrt{3}}{3}$x,得出S△P1BE關(guān)于x的表達(dá)式,利用配方法求最值即可.
解答 (1)證明:∵∠B1CB=45°,∠B1CA1=90°,
∴∠B1CQ=∠BCP1=45°,
∵在△B1CQ和△BCP1中,$\left\{\begin{array}{l}{∠{B}_{1}CQ=∠BC{P}_{1}}&{\;}\\{{B}_{1}C=BC}&{\;}\\{∠{B}_{1}=∠B}&{\;}\end{array}\right.$,
∴△B1CQ≌△BCP1(ASA),![]()
∴CQ=CP1;
(2)解:作P1D⊥CA于D,如圖所示:
∵∠A=30°,
∴P1D=$\frac{1}{2}$AP1=1,
∵∠P1CD=45°,
∴$\frac{{P}_{1}D}{C{P}_{1}}$=sin45°=$\frac{\sqrt{2}}{2}$,
∴CP1=$\sqrt{2}$P1D=$\sqrt{2}$,
又∵CP1=CQ,
∴CQ=$\sqrt{2}$;
(3)解:∵∠P1BE=90°,∠ABC=60°,
∴∠A=∠CBE=30°,
∴AC=$\sqrt{3}$BC,
由旋轉(zhuǎn)的性質(zhì)可得:∠ACP1=∠BCE,
∴△AP1C∽△BEC,
∴AP1:BE=AC:BC=$\sqrt{3}$:1,
設(shè)AP1=x,則BE=$\frac{\sqrt{3}}{3}$x,
在Rt△ABC中,∠A=30°,
∴AB=2BC=2,
∴S△P1BE=$\frac{1}{2}$×$\frac{\sqrt{3}}{3}$x(2-x)=-$\frac{\sqrt{3}}{6}$x2+$\frac{\sqrt{3}}{3}$x
=-$\frac{\sqrt{3}}{6}$(x-1)2+$\frac{\sqrt{3}}{6}$,
故當(dāng)x=1時(shí),△P1BE面積的最大值是$\frac{\sqrt{3}}{6}$;
故答案為:$\frac{\sqrt{3}}{6}$.
點(diǎn)評(píng) 本題是三角形綜合題目,考查了相似三角形的判定與性質(zhì)、含30°角的直角三角形的性質(zhì)、勾股定理及配方法求二次函數(shù)的最值;本題綜合性強(qiáng),有一定難度.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 任何有理數(shù)的絕對(duì)值都是正數(shù) | |
| B. | 任何有理數(shù)的絕對(duì)值都不可能小于0 | |
| C. | 1是最小的正數(shù) | |
| D. | 最大的負(fù)數(shù)是-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com