【題目】如圖,在矩形ABCD中,AB=8,AD=6,點(diǎn)E為AB上一點(diǎn),AE=2
,點(diǎn)F在AD上,將△AEF沿EF折疊,當(dāng)折疊后點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在BC的垂直平分線上時(shí),折痕EF的長(zhǎng)為_____.
![]()
【答案】4或4
.
【解析】
①當(dāng)AF<
AD時(shí),由折疊的性質(zhì)得到A′E=AE=2
,AF=A′F,∠FA′E=∠A=90°,過E作EH⊥MN于H,由矩形的性質(zhì)得到MH=AE=2
,根據(jù)勾股定理得到A′H=
,根據(jù)勾股定理列方程即可得到結(jié)論;②當(dāng)AF>
AD時(shí),由折疊的性質(zhì)得到A′E=AE=2
,AF=A′F,∠FA′E=∠A=90°,過A′作HG∥BC交AB于G,交CD于H,根據(jù)矩形的性質(zhì)得到DH=AG,HG=AD=6,根據(jù)勾股定理即可得到結(jié)論.
①當(dāng)AF<
AD時(shí),如圖1,將△AEF沿EF折疊,當(dāng)折疊后點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在BC的垂直平分線上,
![]()
則A′E=AE=2
,AF=A′F,∠FA′E=∠A=90°,
設(shè)MN是BC的垂直平分線,
則AM=
AD=3,
過E作EH⊥MN于H,
則四邊形AEHM是矩形,
∴MH=AE=2
,
∵A′H=
,
∴A′M=
,
∵MF2+A′M2=A′F2,
∴(3-AF)2+(
)2=AF2,
∴AF=2,
∴EF=
=4;
②當(dāng)AF>
AD時(shí),如圖2,將△AEF沿EF折疊,當(dāng)折疊后點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在BC的垂直平分線上,
![]()
則A′E=AE=2
,AF=A′F,∠FA′E=∠A=90°,
設(shè)MN是BC的垂直平分線,
過A′作HG∥BC交AB于G,交CD于H,
則四邊形AGHD是矩形,
∴DH=AG,HG=AD=6,
∴A′H=A′G=
HG=3,
∴EG=
=
,
∴DH=AG=AE+EG=3
,
∴A′F=
=6,
∴EF=
=4
,
綜上所述,折痕EF的長(zhǎng)為4或4
,
故答案為:4或4
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線
與
軸兩個(gè)交點(diǎn)間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對(duì)稱軸為直線
,將此拋物線向左平移2個(gè)單位,再向下平移3個(gè)單位,得到的拋物線過點(diǎn)( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線
與雙曲線
只有一個(gè)交點(diǎn)A(1,2),且與x軸、y軸分別交于B、C兩點(diǎn),AD垂直平分OB,垂足為D,
求:(1)直線、雙曲線的解析式.
(2)線段BC的長(zhǎng);
(3)三角形BOC的內(nèi)心到三邊的距離.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,點(diǎn)B在線段AE上,點(diǎn)C在線段AD上,如圖2,△ABC以點(diǎn)A為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn).
![]()
(1)證明:BE=CD
(2)當(dāng)AC=
ED時(shí),探究在△ABC旋轉(zhuǎn)的過程中,是否存在這樣的旋轉(zhuǎn)角α,使以A、B、C、D四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出角α的度數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的對(duì)稱軸為x=﹣1,且過點(diǎn)(﹣3,0),(0,﹣3).
(1)求拋物線的表達(dá)式.
(2)已知點(diǎn)(m,k)和點(diǎn)(n,k)在此拋物線上,其中m≠n,請(qǐng)判斷關(guān)于t的方程t2+mt+n=0是否有實(shí)數(shù)根,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,甲、乙兩家水果店以同樣的價(jià)格銷售同一種水果,它們的優(yōu)惠方案分別為:甲水果店,一次性購(gòu)水果超過
元,超過部分打七折;乙水果店,一次性購(gòu)水果超過
元,超過部分打五折,設(shè)水果售價(jià)為
(單位:元)
,在甲.乙兩家水果店購(gòu)水果應(yīng)付金額為
(單位:元),
(單位:元),
與
之間的函數(shù)關(guān)系如圖所示.
![]()
(1)求甲水果店購(gòu)水果應(yīng)付金額
與水果售價(jià)
之間的函數(shù)關(guān)系式;
(2)求交點(diǎn)
的坐標(biāo);
(3)根據(jù)圖象,請(qǐng)直接寫出春節(jié)期間選擇哪家水果店購(gòu)水果更優(yōu)惠.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:y=kx+b(k,b為常數(shù),k≠0)與函數(shù)y=
的圖象交于點(diǎn)A(-1,m)
(1)求m;
(2)當(dāng)k=______時(shí),則直線l經(jīng)過第一、三、四象限(任寫一個(gè)符合題意的值即可);
(3)求(2)中的直線l的解析式和它與兩坐標(biāo)軸圍成的三角形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以任意△ABC的邊AB和AC向形外作等腰Rt△ABD和等腰Rt△ACE,F、G分別是線段BD和CE的中點(diǎn),則
的值等于( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,連接AC,做△ABC的外接圓⊙O,延長(zhǎng)EC交⊙O于點(diǎn)D,連接BD、AD,BC與AD交于點(diǎn)F分,∠ABC=∠ADB。
(1)求證:AE是⊙O的切線;
(2)若AE=12,CD=10,求⊙O的半徑。
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com