【題目】如圖,在平面直角坐標(biāo)系
中,直線
與
軸、
軸分別相交于
、
兩點,點
是
的中點,點
、
分別為線段
、
上的動點,將
沿
折疊,使點
的對稱點
恰好落在線段
上(不與端點重合).連接
分別交
、
于點
、
,連接
.
![]()
(1)求
的值;
(2)試判斷
與
的位置關(guān)系,并加以證明;
(3)若
,求點
的坐標(biāo).
【答案】(1)
;(2)
,證明見解析;(3)點
的坐標(biāo)為
.
【解析】
(1)結(jié)合A,B的坐標(biāo),在在
中,即可求出
的值;
(2)
與
的位置關(guān)系為
,利用折疊的性質(zhì)以及
斜邊
上的中線定理可證明
,再利用相似三角形的性質(zhì)進(jìn)一步證明
,結(jié)合三角形內(nèi)角和定理即可證明結(jié)論;
(3)設(shè)
,則
,
,用含t的式子表示出DN,再由
,得出OD的值,最后利用勾股定理求解即可.
解:(1)由題意得:
,
.
在
中,
.
(2)
,理由如下:
由折疊的性質(zhì)得:
.
∵
為
斜邊
上的中線,
∴
,
∴
,
∴
.
又∵
,
∴
,
∴
,即
,
又∵
,
∴
,
∴
,
∴
,
∴
,
∴
.
(3)∵![]()
∴在
中,
,
設(shè)
,則
,
,
當(dāng)
時,
.
又∵
,
,
∴
,
∴
,
∴
.
由
得:
,即
,
∴
.
在
中,由勾股定理得:
,
即
,解得:
,
,
∴
或0(不合題意,舍去),
∴點
.
綜上所述,點
的坐標(biāo)為
.
![]()
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)
的圖像與
軸交于
、
兩點,與
軸交于點
,
.點
在函數(shù)圖像上,
軸,且
,直線
是拋物線的對稱軸,
是拋物線的頂點.
(1)求
、
的值;
(2)如圖①,連接
,線段
上的點
關(guān)于直線
的對稱點
恰好在線段
上,求點
的坐標(biāo);
(3)如圖②,動點
在線段
上,過點
作
軸的垂線分別與
交于點
,與拋物線交于點
.試問:拋物線上是否存在點
,使得
與
的面積相等,且線段
的長度最?如果存在,求出點
的坐標(biāo);如果不存在,說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點B(0,4),等邊三角形OAB的頂點A在反比例函數(shù)y=
(x>0)的圖象上.
![]()
(1)求反比例函數(shù)的表達(dá)式;
(2)把△OAB沿y軸向上平移a個單位長度,對應(yīng)得到△O'A'B'.當(dāng)這個函數(shù)的圖象經(jīng)過△O'A'B'一邊的中點時,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從下列4個命題中任取一個:①三點確定一個圓:②平分弦的直徑平分弦所對的弧:③弦相等,所對的圓心角相等;④在半徑為4的圓中,30°的圓心角所對的弧長為
,是真命題的概率是( ).
A.1B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果兩條線段將一個三角形分成3個等腰三角形,我們把這兩條線段叫做這個三角形的三分線.如圖1,把一張頂角為36的等腰三角形紙片剪兩刀,分成3張小紙片,使每張小紙片都是等腰三角形,我們把這兩條線段叫做等腰三角形的三分線.
![]()
(1)如圖2,請用兩種不同的方法畫出頂角為45的等腰三角形的三分線,并標(biāo)注每個等腰三角形頂角的度數(shù):(若兩種方法分得的三角形成3對全等三角形,則視為同一種) .
(2)如圖3,△ABC 中,AC=2,BC=3,∠C=2∠B,請畫出△ABC 的三分線,并求出三分線的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線![]()
.
![]()
(1)求證:拋物線與
軸有兩個交點.
(2)設(shè)拋物線與
軸的兩個交點的橫坐標(biāo)分別為
,
(其中
).若
是關(guān)于
的函數(shù)、且
,求這個函數(shù)的表達(dá)式;
(3)若
,將拋物線向上平移一個單位后與
軸交于點
、
.平移后如圖所示,過
作直線
,分別交
的正半軸于點
和拋物線于點
,且
.
是線段
上一動點,求
的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形
和四邊形
都是正方形,且
.
(1)如圖1,連接
、
.求證:
;
(2)如圖2,如果正方形
繞點
旋轉(zhuǎn)到某一位置恰好使得
,
.
①求
的度數(shù);
②若正方形
的邊長是
,請求出
的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形
的邊長為2,連接
,點
是線段
延長線上的一個動點,
,點
是
與線段
延長線的交點,當(dāng)
平分
時,
______
(填“>”“<”或“=”):當(dāng)
不平分
時,
__________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個一元二次方程的兩個實數(shù)根的比值與另一個一元二次方程的兩個實數(shù)根的比值相等,我們稱這兩個方程為“相似方程”,例如,
的實數(shù)根是3或6,
的實數(shù)根是1或2,
,則一元二次方程
與
為相似方程.下列各組方程不是相似方程的是( )
A.
與
B.
與![]()
C.
與
D.
與![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com