分析 首先求出S關(guān)于r的函數(shù)表達(dá)式,分析其增減性;然后根據(jù)r的取值,求出S的最大值與最小值,從而得到S的取值.
解答
解:如右圖所示,過點(diǎn)D作DG⊥BC于點(diǎn)G,易知G為BC的中點(diǎn),CG=1,
在Rt△CDG中,由勾股定理得:DG=$\sqrt{C{D}^{2}-C{G}^{2}}$=$\sqrt{{r}^{2}-1}$,
設(shè)∠DCG=θ,則由題意可得:
S=2(S扇形CDE-S△CDG)=2($\frac{θ•{r}^{2}}{360}$-$\frac{1}{2}$×1×$\sqrt{{r}^{2}-1}$)=$\frac{θπ{r}^{2}}{180}$-$\sqrt{{r}^{2}-1}$,
∴S=$\frac{θπ{r}^{2}}{180}$-$\sqrt{{r}^{2}-1}$.
當(dāng)r增大時(shí),∠DCG=θ隨之增大,故S隨r的增大而增大.
當(dāng)r=$\sqrt{2}$時(shí),DG=1,∵CG=1,故θ=45°,
∴S=$\frac{45π•(\sqrt{2})^{2}}{180}$-$\sqrt{(\sqrt{2})^{2}-1}$=$\frac{π}{2}$-1,
故答案為:$\frac{π}{2}$-1.
點(diǎn)評 本題考查扇形面積的計(jì)算、等邊三角形的性質(zhì)、勾股定理等重要知識(shí)點(diǎn).解題關(guān)鍵是求出S的函數(shù)表達(dá)式.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com