【題目】如圖,在△ABC中,AC=6,∠BAC=60°,AM為△ABC的角平分線,若
,則AM長為( 。
![]()
A.6B.
C.
D.![]()
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級某班聯(lián)歡會上,節(jié)目組設(shè)計了一個即興表演節(jié)目游戲,在一個不透明的盒子里,放有五個完全相同的乒乓球,乒乓球上分別標有數(shù)字1,2,3,4,5,游戲規(guī)則是:參加聯(lián)歡會的50名同學(xué),每人同時從盒子里一次摸出兩個乒乓球,若兩球上數(shù)字之和是偶數(shù)就給大家即興表演一個節(jié)目;否則,下一個同學(xué)依次進行,直至50名同學(xué)都模完,
(1)若小朱是該班同學(xué),用列表法或畫樹狀圖法求小朱同學(xué)表演節(jié)目的概率
(2)若參加聯(lián)歡會的同學(xué)每人都有一次摸球的機會,請估計本次聯(lián)歡會上有多少個同學(xué)表演節(jié)目?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)
的圖象與反比例函數(shù)
(
為常數(shù),且
)的圖象交于
,
兩點,與
軸和
軸分別交于
兩點,
軸,
軸,垂足分別為
點,且
與
交于點
.
(1)求反比例函數(shù)的表達式及點
的坐標;
(2)直接寫出反比例函數(shù)圖像位于第一象限且
時自變量
的取值范圍;
(3)求
與
面積的比.
![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標有數(shù)字1、2、3、4,另有一個可以自由旋轉(zhuǎn)的圓盤.被分成面積相等的3個扇形區(qū),分別標有數(shù)字1、2、3(如圖所示).小穎和小亮想通過游戲來決定誰代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一個人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.
(1)用樹狀圖或列表法求出小穎參加比賽的概率;
(2)你認為該游戲公平嗎?請說明理由;若不公平,請修改該游戲規(guī)則,使游戲公平.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:等腰三角形具有性質(zhì)“等邊對等角”.事實上,不等邊三角形也具有類似性質(zhì)“大邊對大角”:如圖1.在△ABC中,如果AB>AC,那么∠ACB>∠ABC.證明如下:將AB沿△ABC的角平分線AD翻折(如圖2),因為AB>AC,所以點B落在AC的延長線上的點B'處.于是,由∠ACB>∠B',∠ABC=∠B',可得∠ACB>∠ABC.
(1)靈活運用:從上面的證法可以看出,折紙常常能為證明一個命題提供思路和方法.由此小明想到可用類似方法證明“大角對大邊”:如圖3.在△ABC中,如果∠ACB>∠ABC,那么AB>AC.小明的思路是:沿BC的垂直平分線翻折……請你幫助小明完成后面的證明過程.
(2)拓展延伸:請運用上述方法或結(jié)論解決如下問題:
如圖4,已知M為正方形ABCD的邊CD上一點(不含端點),連接AM并延長,交BC的延長線于點N.求證:AM+AN>2BD.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,點E,F分別在BC,AD上,BE=DF,連結(jié)AE,CF.
![]()
(1)求證:四邊形AECF是平行四邊形;
(2)若四邊形AECF為菱形,∠AFC=120°,BE=CE=4,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為
分別位于
軸,
軸上,點
在
上,
交
于點
,函數(shù)
的圖像經(jīng)過點
,若
,則
的值為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB
與x軸,y軸,交于A、B兩點,點C是BO的中點且![]()
(1)求直線AC的解析式;
(2)若點M是直線AC的一點,當
時,求點M的坐標.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com