分析 依據(jù)同角的補(bǔ)角相等可證明∠1=∠4,依據(jù)平行線的判定定理可證明a∥c,依據(jù)對(duì)頂角的性質(zhì)和等量代換可證明∠2+∠6=180°,最后依據(jù)平行線的判定定理和平行公理的推論進(jìn)行證明即可.
解答 解:因?yàn)椤?+∠2=180°,∠2+∠4=180°(已知),
所以∠1=∠4,(同角的補(bǔ)角相等)
所以a∥c.(內(nèi)錯(cuò)角相等,兩直線平行)
又因?yàn)椤?+∠3=180°(已知)
∠3=∠6(對(duì)頂角相等)
所以∠2+∠6=180°,(等量代換)
所以a∥b.(同旁內(nèi)角互補(bǔ),兩直線平行)
所以b∥c.(平行與同一條直線的兩條直線平行).
故答案為:同角的補(bǔ)角相等;內(nèi)錯(cuò)角相等,兩直線平行;對(duì)頂角相等;等量代換;同旁內(nèi)角互補(bǔ),兩直線平行;平行與同一條直線的兩條直線平行.
點(diǎn)評(píng) 本題主要考查的是平行線的判定,熟練掌握平行線的判定定理是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{2}$(∠1+∠2) | B. | $\frac{1}{2}$∠1 | C. | $\frac{1}{2}$(∠1-∠2) | D. | ∠1-∠2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1<m<2 | B. | 2<m<3 | C. | 3<m<4 | D. | 4<m<5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com