欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

【題目】如圖,正方形OABC的面積為4,點O為坐標原點,點B在函數(shù)yk<0,x<0)的圖象上,點Pm,n)是函數(shù)yk<0,x<0)的圖象上異于B的任意一點,過點P分別作x軸、y軸的垂線,垂足分別為E、F

1)設矩形OEPF的面積為S1,求S1;

2)從矩形OEPF的面積中減去其與正方形OABC重合的面積,剩余面積記為S2.寫出S2m的函數(shù)關系式,并標明m的取值范圍.

【答案】1;(2

【解析】

1)根據(jù)正方形的面積求出點B的坐標,進而可求出函數(shù)解析式,由點P在函數(shù)圖象上即可求出結果;

2)由于點P與點B的位置關系不能確定,故分兩種情況進行討論計算即可.

解:(1)∵正方形的面積為4,

,

代入中,

,

∴解析式為

的圖象上,

,即,

;

2)①當點上方時,

②當點下方時,

綜上,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】定義:對于給定的一次函數(shù)y=ax+ba0),把形如的函數(shù)稱為一次函數(shù)y=ax+ba0)的衍生函數(shù).已知矩形ABCD的頂點坐標分別為A10),B1,2),C(-3,2),D(-30).

1)已知函數(shù)y=2x+l.

①若點P(-1,m)在這個一次函數(shù)的衍生函數(shù)圖像上,則m= .

②這個一次函數(shù)的衍生函數(shù)圖像與矩形ABCD的邊的交點坐標分別為 .

2)當函數(shù)y=kx-3k>0)的衍生函數(shù)的圖象與矩形ABCD2個交點時,k的取值范圍是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形中,連接,為射線上的一個動點(與點不重合),連接,的垂直平分線交線段于點,連接,.

提出問題:當點運動時,的度數(shù)是否發(fā)生改變?

探究問題:

1)首先考察點的兩個特殊位置:

當點與點重合時,如圖1所示,____________

時,如圖2所示,中的結論是否發(fā)生變化?直接寫出你的結論:__________;(填變化不變化

2)然后考察點的一般位置:依題意補全圖3,圖4,通過觀察、測量,發(fā)現(xiàn):(1)中的結論在一般情況下_________;(填成立不成立

3)證明猜想:若(1)中的結論在一般情況下成立,請從圖3和圖4中任選一個進行證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知點與點,是一平行四邊形的四個頂點,則長的最小值為( )

A.4B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】是不小于的實數(shù),關于的方程有兩個不相等的實數(shù)根、,

1)求的取值范圍;

2)若,求值;

3)求的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,OBC的頂點分別為O0,0,B3,1、C2,1

1以點O0,0為位似中心,按比例尺2:1在位似中心的異側將OBC放大為OBC,放大后點B、C兩點的對應點分別為B、C,畫出OBC,并寫出點B、C的坐標:B ,C , ;

21中,若點Mx,y為線段BC上任一點,寫出變化后點M的對應點M的坐標 ,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形紙片ABCD中,AB=6BC=8

1)將矩形紙片沿BD折疊,點A落在點E處(如圖①),設DEBC相交于點F,求BF的長;

2)將矩形紙片折疊,使點B與點D重合(如圖②),求折痕GH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=-x 2 +2mx-m 2+4

(1)m=1時,拋物線的對稱軸和頂點坐標:

(2)求證:不論m取何值時該二次函數(shù)的圖像與x軸必有兩個不同交點

(3)若該二次函數(shù)的圖像與x軸交于點A, B(在點的左側),頂點為C,則這時△ABC的面積為     

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,平行四邊形OABC的邊OC落在x軸的正半軸上,且點B6,2),C4,0),直線y=2x+1以每秒1個單位長度的速度沿y軸向下平移,經(jīng)過______秒該直線可將平行四邊形OABC分成面積相等的兩部分.

查看答案和解析>>

同步練習冊答案