【題目】如圖,點(diǎn)
在拋物線
上,且拋物線與
軸分別交于點(diǎn)
和點(diǎn)
,與
軸交于點(diǎn)![]()
![]()
(1)求拋物線的解析式.
(2)若點(diǎn)
為拋物線對稱軸上的一個動點(diǎn),求
的最小值.
(3)點(diǎn)
為拋物線上除點(diǎn)
外的一點(diǎn),若
與
的面積相等,求點(diǎn)
的坐標(biāo)。
【答案】(1)
;(2)
;(3)
,
,
.
【解析】
(1)將點(diǎn)的坐標(biāo)代入求解即可.
(2)找對稱點(diǎn),利用兩點(diǎn)之間線段最短求解即可.
(3)將幾何問題轉(zhuǎn)化為函數(shù)問題求解即可.
解(1)將點(diǎn)
和
代入
得![]()
解得![]()
![]()
![]()
(2)如圖1,作點(diǎn)
關(guān)于對稱軸的對稱點(diǎn)
,連接![]()
則
的最小值為![]()
∵
,∴
最小值為![]()
(3)由(1)可求出
,![]()
∴直線
的解析式為![]()
∵
與
的面積相等
∴![]()
如圖所示:①過
作
交拋物線于點(diǎn)![]()
![]()
∵![]()
∴直線
的解析式為![]()
聯(lián)合![]()
得
或![]()
∴![]()
②過點(diǎn)
作
,交拋物線于點(diǎn)![]()
直線
的解析式為![]()
聯(lián)合![]()
解得
或![]()
∴
,![]()
綜上所述,滿足條件的有三個,分別為:
,
,![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為
,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
![]()
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得
≌
即可得
,則可證得
為
的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得
利用勾股定理即可求得
的長,又由OE∥AB,證得
根據(jù)相似三角形的對應(yīng)邊成比例,即可求得
的長,然后利用三角函數(shù)的知識,求得
與
的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
![]()
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是
的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為![]()
![]()
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點(diǎn),試求t的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個口袋中裝有六個完全相同的小球,小球上分別標(biāo)有1,2,5,7,8,13六個數(shù),攪勻后一次從中摸出一個小球,將小球上的數(shù)記為m,則使得一次函數(shù)y=(﹣m+1)x+11﹣m經(jīng)過一、二、四象限且關(guān)于x的分式方程
=3x+
的解為整數(shù)的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實(shí)根x1、x2.
(1)求實(shí)數(shù)k的取值范圍.
(2)若方程兩實(shí)根x1、x2滿足x1+x2=﹣x1x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,以AC為直徑的⊙O交AB于點(diǎn)D,點(diǎn)E為弧AD的中點(diǎn),連接CE交AB于點(diǎn)F,且BF=BC.
![]()
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為2,
=
,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=42°,把△ABC繞著點(diǎn)A順時針旋轉(zhuǎn),得到△AB'C',點(diǎn)C的對應(yīng)點(diǎn)C'落在BC邊上,且B'A∥BC,則∠BAC'的度數(shù)為( )
![]()
A.24°B.25°C.26°D.27°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,E是AD邊上的一個動點(diǎn)(有與A、D重合),以E為圓心,EA為半徑的⊙E交CE于G點(diǎn),CF與⊙E切于F點(diǎn).AD=4,AE=x,CF2=y.
(1)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)是否存在x的值,使得FG把△CEF的面積分成1:2兩部分?若存在,求出x的值;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于給定的圖形G和點(diǎn)P,若點(diǎn)P可通過一次向上或向右平移n(n>0)個單位至圖形G上某點(diǎn)P′,則稱點(diǎn)P為圖形G的“可達(dá)點(diǎn)”,特別地,當(dāng)點(diǎn)P在圖形G上時,點(diǎn)P為圖形G的“可達(dá)點(diǎn)”.
(1)如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)A(1,1),B(2,1),
①在點(diǎn)O、A、B中,不是直線y=﹣x+2的“可達(dá)點(diǎn)”的是 ;
②若點(diǎn)A是直線l的“可達(dá)點(diǎn)”且點(diǎn)A不在直線l上,寫出一條滿足要求的直線l的表達(dá)式: ;
③若點(diǎn)A、B中有且僅有一點(diǎn)是直線y=kx+2的“可達(dá)點(diǎn)”,則k的取值范圍是 .
(2)如圖2,在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,直線l:y=﹣
x+b.
①當(dāng)b=﹣2時,若直線m上一點(diǎn)N(xN,yN)滿足N是⊙O的“可達(dá)點(diǎn)”,直接寫出xN的取值范圍 ;
②若直線m上所有的⊙O的“可達(dá)點(diǎn)”構(gòu)成一條長度不為0的線段,直接寫出b的取值范圍 .
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com