分析 (1)根據(jù)正方形的面積求得B的坐標(biāo),利用待定系數(shù)法求得反比例函數(shù)的解析式;
(2)分成P在B的左側(cè)和右側(cè)兩種情況進(jìn)行討論.當(dāng)P在B的左側(cè)時,重合部分是以O(shè)C為邊的矩形,根據(jù)面積公式求得P的橫坐標(biāo),進(jìn)而代入反比例函數(shù)解析式求得縱坐標(biāo);當(dāng)P在B的右側(cè)時,重合部分是以O(shè)A為一邊的矩形,根據(jù)面積公式求得P的縱坐標(biāo),進(jìn)而求得橫坐標(biāo);
(3)與(2)的解法相同,分成兩種情況進(jìn)行討論.
解答 (1)∵正方形OABC的面積為9,∴OA=OC=3,∴B(3,3),
又∵點B(3,3)在函數(shù)y=$\frac{k}{x}$的圖象上,∴k=9;
(2)分兩種情況:①當(dāng)點P在點B的左側(cè)時,
∵P(m,n)在函數(shù)y=$\frac{k}{x}$上,
∴mn=9,
∴S=m(n-3)=mn-3m=$\frac{9}{2}$,解得m=$\frac{3}{2}$,
∴n=6,∴點P的坐標(biāo)是P($\frac{3}{2}$,6);
②當(dāng)點P在點B的右側(cè)時,
∵P(m,n)在函數(shù)y=$\frac{k}{x}$上,
∴mn=9,
∴S=n(m-3)=mn-3n=$\frac{9}{2}$,
解得n=$\frac{3}{2}$,∴m=6,
∴點P的坐標(biāo)是P(6,$\frac{3}{2}$),
綜上所述:P(6,$\frac{3}{2}$),($\frac{3}{2}$,6).
(3)當(dāng)0<m<3時,點P在點B的左邊,此時S=9-3m,
當(dāng)m≥3時,點P在點B的右邊,此時S=9-3n=9-$\frac{27}{m}$.
點評 本題考查了待定系數(shù)法求反比例函數(shù)的解析式,以及反比例函數(shù)比例系數(shù)的幾何意義,注意到分情況討論是關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | 4 | C. | 6 | D. | 2$\sqrt{7}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 20cm | B. | 18cm | C. | 2$\sqrt{5}$cm | D. | 3$\sqrt{2}$cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com