已知二次函數(shù)
.
![]()
(1)當(dāng)二次函數(shù)的圖象經(jīng)過坐標(biāo)原點(diǎn)O(0,0)時,求二次函數(shù)的解析式;
(2)如圖,當(dāng)m=2時,該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為D,求C、D兩點(diǎn)的坐標(biāo);
(3)在(2)的條件下,x軸上是否存在一點(diǎn)P,使得PC+PD最短?若P點(diǎn)存在,求出P點(diǎn)的坐標(biāo);若P點(diǎn)不存在,請說明理由。
解:(1)∵二次函數(shù)
的圖象經(jīng)過坐標(biāo)原點(diǎn)O(0,0),
∴代入得:
,解得:m=±1。
∴二次函數(shù)的解析式為:
或
。
(2)∵m=2,∴二次函數(shù)為:
。
∴拋物線的頂點(diǎn)為:D(2,-1)。
當(dāng)x=0時,y=3,
∴C點(diǎn)坐標(biāo)為:(0,3)。
(3)存在,當(dāng)P、C、D共線時PC+PD最短。
過點(diǎn)D作DE⊥y軸于點(diǎn)E,
![]()
∵PO∥DE,∴△COP∽△CED。
∴
,即
,解得:![]()
∴PC+PD最短時,P點(diǎn)的坐標(biāo)為:P(
,0)。
【解析】
試題分析:(1)根據(jù)二次函數(shù)的圖象經(jīng)過坐標(biāo)原點(diǎn)O(0,0),直接代入求出m的值即可。
(2)把m=2,代入求出二次函數(shù)解析式,利用配方法求出頂點(diǎn)坐標(biāo)以及圖象與y軸交點(diǎn)即可。
(3)根據(jù)兩點(diǎn)之間線段最短的性質(zhì),當(dāng)P、C、D共線時PC+PD最短,利用相似三角形的判定和性質(zhì)得出PO的長即可得出答案。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
| A、y1≥y2 | B、y1>y2 | C、y1<y2 | D、y1≤y2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com