【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,7),點(diǎn)B的坐標(biāo)為(0,3),點(diǎn)C的坐標(biāo)為(3,0).
(1)在圖中作出△ABC的外接圓(利用格圖確定圓心);
(2)圓心坐標(biāo)為 ;外接圓半徑r為 ;
(2)若在x軸的正半軸上有一點(diǎn)D,且∠ADB=∠ACB,則點(diǎn)D的坐標(biāo)為 .
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為2的等邊三角形,點(diǎn)D與點(diǎn)B分別位于直線AC的兩側(cè),且AD=AC, 聯(lián)結(jié)BD、CD,BD交直線AC于點(diǎn)E.
![]()
![]()
(1)當(dāng)∠CAD=90°時,求線段AE的長.
(2)過點(diǎn)A作AH⊥CD,垂足為點(diǎn)H,直線AH交BD于點(diǎn)F,
①當(dāng)∠CAD<120°時,設(shè)
,
(其中
表示△BCE的面積,
表示△AEF的面積),求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
②當(dāng)
時,請直接寫出線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)興趣小組想利用所學(xué)的知識了解某廣告牌的高度,已知CD=2m.經(jīng)測量,得到其它數(shù)據(jù)如圖所示.其中∠CAH=37°,∠DBH=67°,AB=10m,請你根據(jù)以上數(shù)據(jù)計算GH的長.(參考數(shù)據(jù)tan67°
, tan37°
)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,點(diǎn)C是半徑OA的中點(diǎn),過點(diǎn)C作OA的垂線交AB于點(diǎn)E,且與BE的垂直平分線交于點(diǎn)D,連接BD.
(1)求證:BD是⊙O的切線;
(2)若⊙O的半徑為2
,CE=1,試求BD的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,邊BC長為18,高AD長為12
(1)如圖,矩形EFCH的邊GH在BC邊上,其余兩個頂點(diǎn)E、F分別在AB、AC邊上,EF交AD于點(diǎn)K,求
的值;
(2)設(shè)EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關(guān)系式,并求S的最大值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)M的坐標(biāo)為(x1,y1),點(diǎn)N的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2,以MN為邊構(gòu)造菱形,若該菱形的兩條對角線分別平行于x軸,y軸,則稱該菱形為邊的“坐標(biāo)菱形”.
(1)已知點(diǎn)A(2,0),B(0,2
),則以AB為邊的“坐標(biāo)菱形”的最小內(nèi)角為 ;
(2)若點(diǎn)C(1,2),點(diǎn)D在直線y=5上,以CD為邊的“坐標(biāo)菱形”為正方形,求直線CD 表達(dá)式;
(3)⊙O的半徑為
,點(diǎn)P的坐標(biāo)為(3,m).若在⊙O上存在一點(diǎn)Q,使得以QP為邊的“坐標(biāo)菱形”為正方形,求m的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是菱形ABCD對角線AC與BD的交點(diǎn),CD=4cm,OD=3cm;過點(diǎn)C作CE∥DB,過點(diǎn)B作BE∥AC,CE與BE相交于點(diǎn)E.
![]()
(1)求證:四邊形OBEC為矩形;
(2)求四邊形ABEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BCA=90,AC=6,BC=8,D是AB的中點(diǎn),將△ACD沿直線CD折疊得到△ECD,連接BE,則線段BE的長等于( )
![]()
A.5B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線
交
軸
、
兩點(diǎn)(
在
的左側(cè)),且
,
,與
軸交于
,拋物線的頂點(diǎn)坐標(biāo)為
.
![]()
(1)求
、
兩點(diǎn)的坐標(biāo);
(2)求拋物線的解析式;
(3)過點(diǎn)
作直線
軸,交
軸于點(diǎn)
,點(diǎn)
是拋物線上
、
兩點(diǎn)間的一個動點(diǎn)(點(diǎn)
不與
、
兩點(diǎn)重合),
、
與直線
分別交于點(diǎn)
、
,當(dāng)點(diǎn)
運(yùn)動時,
是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com