【題目】下列各組數(shù)中,以a、b、c為邊的三角形不是直角三角形的是( 。
A. a=
,b=
,c=
B. a=1.5,b=2,c=3
C. a=6,b=8,c=10 D. a=3,b=4,c=5
【答案】B
【解析】根據(jù)勾股定理的逆定理對各選項(xiàng)進(jìn)行逐一判斷即可.
解:A、∵
,∴能構(gòu)成直角三角形,故本選項(xiàng)不符合題意;
B、∵1.52+22=6.25≠32,∴不能構(gòu)成直角三角形,故本選項(xiàng)符合題意;
C、∵62+82=100=102,∴能構(gòu)成直角三角形,故本選項(xiàng)不符合題意;
D、∵32+42=25=52,∴能構(gòu)成直角三角形,故本選項(xiàng)不符合題意.
故選B.
“點(diǎn)睛”本題考查的是用勾股定理的逆定理判斷三角形的形狀,即只要三角形的三邊滿足a2+b2=c2,則此三角形是直角三角形.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】金瑞公司決定從廠家購進(jìn)甲、乙兩種不同型號的顯示器共50臺,購進(jìn)顯示器的總金額不超過77000元,已知甲、乙型號的顯示器價格分別為1000元/臺、2000元/臺.
(1)求金瑞公司至少購進(jìn)甲型顯示器多少臺?
(2)若甲型顯示器的臺數(shù)不超過乙型顯示器的臺數(shù),則有哪些購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請把下列證明過程補(bǔ)充完整(括號內(nèi)填寫相應(yīng)的理由)
已知:如圖,點(diǎn)E在BC延長線上,AE交CD于點(diǎn)F,AD∥BC,∠1=∠2,∠3=
∠4,求證:AB∥CD.
![]()
證明:∵AD∥BC(已知)
∴∠3=∠______( )
又∵∠3=∠4(已知)
∴∠4=∠______( )
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(等式性質(zhì))
即∠BAF=∠_______
∴∠4=∠________( )
∴AB∥CD( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四幅圖象近似刻畫兩個變量之間的關(guān)系,請按圖象順序?qū)⑾旅嫠姆N情景與之對應(yīng)排序( ).
![]()
①一輛汽車在公路上勻速行駛(汽車行駛的路程與時間的關(guān)系)
②向錐形瓶中勻速注水(水面的高度與注水時間的關(guān)系)
③將常溫下的溫度計插入一杯熱水中(溫度計的讀數(shù)與時間的關(guān)系)
④一杯越來越?jīng)龅乃ㄋ疁嘏c時間的關(guān)系)
A.①②④③ B.③④②①
C.①④②③ D.③②④①
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)現(xiàn)有5個質(zhì)地、大小完全相同的小球上分別標(biāo)有數(shù)字﹣1,﹣2,1,2,3.先將標(biāo)有數(shù)字﹣2,1,3的小球放在第一個不透明的盒子里,再將其余小球放在第二個不透明的盒子里.現(xiàn)分別從兩個盒子里各隨即取出一個小球.
(1)請利用列表或畫樹狀圖的方法表示取出的兩個小球上數(shù)字之和所有可能的結(jié)果;
(2)求取出的兩個小球上的數(shù)字之和等于0的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
“
≥0”這個結(jié)論在數(shù)學(xué)中非常有用,有時我們需要將代數(shù)式配成完全平方式.例如:
,
∵
≥0,
∴
≥1,
∴
≥1.
試?yán)?/span>“配方法”解決下列問題:
(1)填空:
(x )2+ ;
(2) 已知a,b,c是△ABC的三邊長,滿足a2+b2=10a+8b﹣41,且c是△ABC中最長的邊,求c的取值范圍.
(3)比較代數(shù)式
與
的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AD平分∠BAC,AD⊥BC,垂足為D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為E.
(1)求證:四邊形ADCE是矩形;
(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是正方形?給出證明.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC邊上的一點(diǎn),E為AD的中點(diǎn),過A作BC的平行線交CE的延長線于F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是一塊邊長為4米的正方形苗圃,園林部門將其改造為矩形
的形狀,其中點(diǎn)
在
邊上,點(diǎn)
在
的延長線上,
設(shè)
的長為
米,改造后苗圃
的面積為
平方米.
(1)
與
之間的函數(shù)關(guān)系式為 (不需寫自變量的取值范圍);
(2)根據(jù)改造方案,改造后的矩形苗圃
的面積與原正方形苗圃
的面積相等,請問此時
的長為多少米?
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com