【題目】如圖,在正方形ABCD中,E為邊BC上一點(diǎn)(不與點(diǎn)B,C重合),垂直于AE的一條直線MN分別交AB,AE,CD于點(diǎn)M,P,N.小聰過點(diǎn)B作BF∥MN分別交AE,CD于點(diǎn)G,F后,猜想線段EC,DN,MB之間的數(shù)量關(guān)系為EC=DN+MB.他的猜想正確嗎?請(qǐng)說明理由.
![]()
【答案】正確,理由見解析
【解析】
先證明四邊形MBFN是平等四邊形,從而得到MB=NF;根據(jù)ASA證明△ABE≌△BCF,從而得到BE=CF,則有DF=EC,再根據(jù)DF=NF+DN和MB=NF可得到EC=DN+MB.
∵四邊形ABCD是正方形,
∴MB//NF,∠C=∠ABC,AB//DC,∠BFC+∠CBF=90,AB=BC,
又∵MN//BF,
∴四邊形MBFN是平行四邊形,∠AMP=∠ABF,
∴MB=NF,
∵AB//DC,
∴∠BFC=∠ABF,
又∵∠AMP=∠ABF,
∴∠AMP=∠BFC,
∵MN⊥AE,
∴∠APM是直角,則∠AMP+∠MAE=90,
又∵∠BFC+∠CBF=90,
∴∠MAE=CBF,
在△ABE和△BCF中
,
∴△ABE≌△BCF(AAS),
∴BE=CF,
∴CE=DF
又∵DF=NF+DN(由圖可得),MB=NF(已證)
∴CE=DF=DN+MB,即CE=DN+MB.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣為落實(shí)“精準(zhǔn)扶貧惠民政策”,計(jì)劃將某村的居民自來水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊(duì)先合作施工15天,那么余下的工程由甲隊(duì)單獨(dú)完成還需5天.
(1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?
(2)為了縮短工期以減少對(duì)居民用水的影響,工程指揮部最終決定該工程由甲、乙兩隊(duì)合作完成.則甲、乙兩隊(duì)合作完成該工程需要多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從
兩地相向而行,甲車從
地出發(fā)
后乙車從
地出發(fā),若甲車到達(dá)
地后直接按原路原速返回,而乙車到達(dá)
地后,先休息
再按原路原速返回.如圖是甲、乙兩車離
地距離
(單位:
),
(單位:
)與甲車的行駛時(shí)間
(單位:
)之間的函數(shù)圖象.
(1)甲車的速度是
.乙車的速度是
.點(diǎn)
的坐標(biāo)是
(2)求線段
和
的函數(shù)關(guān)系式;
(3)甲、乙兩車在行駛的過程中相遇了幾次?直接寫出當(dāng)甲、乙兩車相遇時(shí)甲車行駛的時(shí)間,并求出當(dāng)兩車最后一次相遇時(shí),此時(shí)兩車距
地的距離
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:
在綜合與實(shí)踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開展數(shù)學(xué)活動(dòng).如圖1,將:矩形紙片ABCD沿對(duì)角線AC剪開,得到△ABC和△ACD.并且量得AB=2cm,AC=4cm.
操作發(fā)現(xiàn):
(1)將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn)
,使
,得到如圖2所示的△
,過點(diǎn)C作
的平行線,與
的延長(zhǎng)線交于點(diǎn)E,則四邊形
的形狀是 .
![]()
(2)創(chuàng)新小組將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn),使B、A、D三點(diǎn)在同一條直線上,得到如圖3所示的△
,連接
,取
的中點(diǎn)F,連接AF并延長(zhǎng)至點(diǎn)G,使FG=AF,連接CG、
,得到四邊形
,發(fā)現(xiàn)它是正方形,請(qǐng)你證明這個(gè)結(jié)論.
實(shí)踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將△ABC沿著BD方向平移,使點(diǎn)B與點(diǎn)A重合,此時(shí)A點(diǎn)平移至
點(diǎn),
與
相交于點(diǎn)H,如圖4所示,連接
,試求
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:
在綜合與實(shí)踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開展數(shù)學(xué)活動(dòng).如圖1,將:矩形紙片ABCD沿對(duì)角線AC剪開,得到△ABC和△ACD.并且量得AB=2cm,AC=4cm.
操作發(fā)現(xiàn):
(1)將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn)
,使
,得到如圖2所示的△
,過點(diǎn)C作
的平行線,與
的延長(zhǎng)線交于點(diǎn)E,則四邊形
的形狀是 .
![]()
(2)創(chuàng)新小組將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn),使B、A、D三點(diǎn)在同一條直線上,得到如圖3所示的△
,連接
,取
的中點(diǎn)F,連接AF并延長(zhǎng)至點(diǎn)G,使FG=AF,連接CG、
,得到四邊形
,發(fā)現(xiàn)它是正方形,請(qǐng)你證明這個(gè)結(jié)論.
實(shí)踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將△ABC沿著BD方向平移,使點(diǎn)B與點(diǎn)A重合,此時(shí)A點(diǎn)平移至
點(diǎn),
與
相交于點(diǎn)H,如圖4所示,連接
,試求
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)P是反比例函數(shù)
圖象上一個(gè)動(dòng)點(diǎn),以P為圓心的圓始終與y軸相切,設(shè)切點(diǎn)為A.
(1)如圖1,⊙P運(yùn)動(dòng)到與x軸相切,設(shè)切點(diǎn)為K,試判斷四邊形OKPA的形狀,并說明理由.
(2)如圖2,⊙P運(yùn)動(dòng)到與x軸相交,設(shè)交點(diǎn)為B,C.當(dāng)四邊形ABCP是菱形時(shí),
①求過點(diǎn)A,B,C三點(diǎn)的拋物線解析式;
②在過A,B,C三點(diǎn)的拋物線上是否存在點(diǎn)M,使△MBP的面積是菱形ABCP面積的
?若存在,直接寫出所有滿足條件的M點(diǎn)的坐標(biāo);若不存在,試說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線
∥
∥
,一等腰Rt△ABC的三個(gè)頂點(diǎn)A、B、C分別在直線
、
、
上,∠ACB=90°,AC交
于點(diǎn)D.若
與
的距離為1,
與
的距離為4,則
的值是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某幼兒園購買了A,B兩種型號(hào)的玩具,A型玩具的單價(jià)比B型玩具的單價(jià)少9元,已知該幼兒園用了3120元購買A型玩具的件數(shù)與用4200元購買B型玩具的件數(shù)相等.
(1)該幼兒園購買的A,B型玩具的單價(jià)各是多少元?
(2)若A,B兩種型號(hào)的玩具共購買200件,且A型玩具數(shù)量不多于B型玩具數(shù)量的3倍,則購買這些玩具的總費(fèi)用最少需要多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,給出如下定義:將一個(gè)函數(shù)的圖象在y軸左側(cè)的部分沿x軸翻折,其余部分不變,兩部分組成的函數(shù)圖象,稱為這個(gè)函數(shù)的變換圖象.
(1)點(diǎn)A(-1,4)在函數(shù)y=x+m的變換圖象上,求m的值;
(2)點(diǎn)B(n,2)在函數(shù)y=-x2+4x的變換圖象上,求n的值;
(3)將點(diǎn)C(
,1)向右平移5個(gè)單位長(zhǎng)度得到點(diǎn)D.當(dāng)線段CD與函數(shù)y= -x2+4x+t的變換圖象有兩個(gè)公共點(diǎn),直接寫出t的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com