【題目】如圖,直線y=
x+2與雙曲線相交于點(diǎn)A(m,3),與x軸交于點(diǎn)C. ![]()
(1)求雙曲線解析式;
(2)點(diǎn)P在x軸上,如果△ACP的面積為3,求點(diǎn)P的坐標(biāo).
【答案】
(1)解:把A(m,3)代入直線解析式得:3=
m+2,即m=2,
∴A(2,3),
把A坐標(biāo)代入y=
,得k=6,
則雙曲線解析式為y= ![]()
(2)解:對于直線y=
x+2,令y=0,得到x=﹣4,即C(﹣4,0),
設(shè)P(x,0),可得PC=|x+4|,
∵△ACP面積為3,
∴
|x+4|3=3,即|x+4|=2,
解得:x=﹣2或x=﹣6,
則P坐標(biāo)為(﹣2,0)或(﹣6,0)
【解析】(1)把A坐標(biāo)代入直線解析式求出m的值,確定出A坐標(biāo),即可確定出雙曲線解析式;(2)設(shè)P(x,0),表示出PC的長,高為A縱坐標(biāo),根據(jù)三角形ACP面積求出x的值,確定出P坐標(biāo)即可.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,以點(diǎn)C為圓心5cm為半徑的圓與直線AB的位置關(guān)系是( )
A.相交
B.相切
C.相離
D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.且△OCP與△PDA的面積比為1:4
(1)如圖1,已知折痕與邊BC交于點(diǎn)O,連結(jié)AP、OP、OA.
①求證:△OCP∽△PDA;
②求邊AB的長;![]()
(2)如圖2,連結(jié)AP、BP.動(dòng)點(diǎn)M在線段AP上(點(diǎn)M與點(diǎn)P、A不重合),動(dòng)點(diǎn)N在線段AB的延長線上,且BN=PM,連結(jié)MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問當(dāng)點(diǎn)M、N在移動(dòng)過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;若不變,求出線段EF的長度.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來水“階梯計(jì)費(fèi)”方式,用戶用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行加價(jià)收費(fèi).為更好地決策,自來水公司隨機(jī)抽取部分用戶的用水量數(shù)據(jù),并繪制了如下不完整的統(tǒng)計(jì)圖(每組數(shù)據(jù)包括右端點(diǎn)但不包括左端點(diǎn)),請你根據(jù)統(tǒng)計(jì)圖解答下列問題: ![]()
(1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?
(2)補(bǔ)全頻數(shù)分布直方圖,求扇形圖中“15噸~20噸”部分的圓心角的度數(shù);
(3)如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)20萬用戶中約有多少用戶的用水全部享受基本價(jià)格?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+2x+3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,連接BC.![]()
(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)若點(diǎn)P為線段BC上一點(diǎn)(不與B,C重合),PM∥y軸,且PM交拋物線于點(diǎn)M,交x軸于點(diǎn)N,當(dāng)△BCM的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,當(dāng)△BCM的面積最大時(shí),在拋物線的對稱軸上存在一點(diǎn)Q,使得△CNQ為直角三角形,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】哈市某中學(xué)為了解學(xué)生的課余生活情況,學(xué)校決定圍繞“在欣賞音樂、讀課外書、體育運(yùn)動(dòng).其他活動(dòng)中,你最喜歡的課余生活種類是什么?(只寫一類)”的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查問卷適當(dāng)整理后繪制成如圖所示的不完整的條形統(tǒng)計(jì)圖,其中最喜歡欣賞音樂的學(xué)生占被抽取人數(shù)的12%,請你根據(jù)以上信息解答下列問題: ![]()
(1)在這次調(diào)查中,一共抽取了多少名學(xué)生?
(2)最喜歡讀課外書的學(xué)生占被抽取人數(shù)的百分?jǐn)?shù)是多少?
(3)如果全校有1000名學(xué)生,請你估計(jì)全校最喜歡體育運(yùn)動(dòng)的學(xué)生約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過D、A、C三點(diǎn)的圓的圓心為E,過B、E、F三點(diǎn)的圓的圓心為D,如果∠A=63°,那么∠B= . ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4,點(diǎn)E、F分別在邊AB、ABC上,且AE=BF=1,CE、DF相交于點(diǎn)O,下列結(jié)論: ①∠DOC=90°,②OC=OE,③tan∠OCD=
,④△COD的面積等于四邊形BEOF的面積中,正確的有 ( )![]()
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com