分析 (1)把15°化為45°-30°以后,再利用公式sin(α±β)=sinαcosβ±cosasinβ計算,即可求出sin15°的值;
(2)先根據(jù)銳角三角函數(shù)的定義求出BE的長,再根據(jù)AB=AE+BE即可得出結論.
解答 解:(1)sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30°=$\frac{\sqrt{2}}{2}$×$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{2}}{2}$×$\frac{1}{2}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$
(2)在Rt△BDE中,∵∠BED=90°,∠BDE=75°,DE=AC=7米,
∴BE=DE•tan∠BDE=DE•tan75°.
∵tan75°=2+$\sqrt{3}$,
∴BE=7(2+$\sqrt{3}$)=14+7$\sqrt{3}$,
∴AB=AE+BE=$\sqrt{3}$+14+7$\sqrt{3}$=14+8$\sqrt{3}$(米).
答:紀念碑的高度為(14+8$\sqrt{3}$)米.
點評 本題考查了:(1)特殊角的三角函數(shù)值的應用,屬于新題型,解題的關鍵是根據(jù)題目中所給信息結合特殊角的三角函數(shù)值來求解.(2)解直角三角形的應用-仰角俯角問題,先根據(jù)銳角三角函數(shù)的定義得出BE的長是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 4(80+x)=(80-x)×1 | B. | 80-x=4(80+x) | C. | 80+x=80-4x | D. | 80+x=4(80-x) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com