分析 梯形的高就是弦AB與CD之間的距離,根據(jù)垂徑定理求得兩弦的弦心距,當(dāng)CD與AB在圓心的同側(cè)時(shí),梯形的高等于兩弦心距的差,當(dāng)CD與AB在圓心的兩側(cè)時(shí),梯形的高等于兩弦心距的和,根據(jù)梯形的面積公式即可求解.
解答
解:過(guò)O作OE⊥CD于E,交AB于F.連接OA,OC.
在直角△OCE中,CE=$\frac{1}{2}$CD=6,OC=10.
∴OE=$\sqrt{O{C}^{2}-C{E}^{2}}$=$\sqrt{1{0}^{2}-{6}^{2}}$=8;
同理,在直角△AOF中,AF=$\frac{1}{2}$AB=8.
∴OF=$\sqrt{O{A}^{2}-A{F}^{2}}$=$\sqrt{1{0}^{2}-{8}^{2}}$=6.
①如圖1,當(dāng)CD與AB在圓心的同側(cè)時(shí),
則梯形的高EF=OE-OF=8-6=2.
則梯形的面積是:$\frac{1}{2}$(CD+AB)•EF=$\frac{1}{2}$×(12+16)×2=28;
②如圖2,當(dāng)CD與AB在圓心的同側(cè)時(shí),
則梯形的高EF=OE+OF=8+6=14.
則梯形的面積是:$\frac{1}{2}$(CD+AB)•EF=$\frac{1}{2}$×(12+16)×14=196;
綜上:梯形的面積為28或196
點(diǎn)評(píng) 本題考查了垂徑定理,注意到分兩種情況進(jìn)行討論,求得梯形的高是關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | 0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a(1+9.6%+10%) | B. | a(1+9.6%×10%) | C. | a(1+9.6%)(1+10%) | D. | a(1+9.6%)2(1+10%) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com