【題目】如圖,拋物線y=-
x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(4,0),點(diǎn)C坐標(biāo)為(0,4),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)D作x軸的垂線,垂足為E,連接BD.
(1)求拋物線的表達(dá)式及對稱軸;
(2)點(diǎn)F是拋物線上的動(dòng)點(diǎn),當(dāng)∠FBA=2∠BDE時(shí),求點(diǎn)F的坐標(biāo);
(3)若點(diǎn)P是x軸上方拋物線上的動(dòng)點(diǎn),以PB為邊作正方形PBGH,隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨著改變,當(dāng)頂點(diǎn)G或H恰好落在y軸上時(shí),請直接寫出點(diǎn)P的橫坐標(biāo).
![]()
【答案】(1)
,x=1;(2)(
,
)或(
,-
);(3)點(diǎn)P的橫坐標(biāo)為
或0或2或2-![]()
【解析】
(1)將點(diǎn)B、C的坐標(biāo)代入拋物線表達(dá)式,即可求解;
(2)在線段DE上取點(diǎn)M,使MD=MB,此時(shí)∠EMB=2∠BDE,則∠FBA=∠EMB,即可求解;
(3)分點(diǎn)P在對稱軸右側(cè)、點(diǎn)P在對稱軸左側(cè)兩種情況,利用三角形全等求解即可.
(1)根據(jù)題意得![]()
![]()
∴![]()
![]()
∴D的坐標(biāo)(1,
)即對稱軸為x=1
(2)如圖,在線段DE上選取點(diǎn)M,使得MD=MB.此時(shí)∠EMB=2∠BDE
![]()
設(shè)ME=a,在Rt△BME中,ME2BE2BM2.
即
,解得a=![]()
∴tan∠EMB=![]()
過F作FN⊥x軸于點(diǎn)N,設(shè)F(m,-
m2+m+4),則FN=|-
m2+m+4|
∵∠FBA=2∠BDE,
∴∠FBA=∠EMB,
∴tan∠FBA=tan∠EMB=![]()
∵B(4,0),E(1,0),
∴BE=3,BN=4/span>﹣m,即tan∠FBA=![]()
當(dāng)點(diǎn)F在x軸上方時(shí),有12(4﹣m)=5(-
m2+m+4),解得m1=4(舍),m2=![]()
∴F的坐標(biāo)(
,
)
當(dāng)點(diǎn)F在x軸下方時(shí),有-12(4﹣m)=5(-
m2+m+4),解得m1=4(舍),m2=
∴F的坐標(biāo)(
,-
)
∴F的坐標(biāo)(
,
)或(
,-
)
(3))①當(dāng)點(diǎn)P在對稱軸右側(cè)時(shí),
(Ⅰ)當(dāng)點(diǎn)H在y軸上時(shí),如圖2,
![]()
∵∠MPB+∠CPH=90°,∠CPH+∠CHP=90°,
∴∠CHP=∠MPB,
∵∠BMP=∠PNH=90°,PH=BP,
∴△BMP≌△PNH(AAS),
∴MB=PC,
設(shè)點(diǎn)P(x,y),則x=y=-
x2+x+4,
解得:x=±2
(舍去負(fù)值),
故點(diǎn)P的橫坐標(biāo)為2
;
(Ⅱ)當(dāng)點(diǎn)G在y軸上時(shí),如圖3,
![]()
過點(diǎn)P作PR⊥x軸于點(diǎn)R,
同理可得:△PRB≌△BOG(AAS),
∴PR=OB=4,
即yP=4=-
x2+x+4,
解得:x=2;
②當(dāng)點(diǎn)P在對稱軸左側(cè)時(shí),
同理可得:點(diǎn)P的橫坐標(biāo)為0或2-2
;
綜上,點(diǎn)P的橫坐標(biāo)為
或0或2或2-![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題背景:如圖①,BC是⊙O的直徑,點(diǎn)A在⊙O上,AB=AC,P為
上一動(dòng)點(diǎn)(不與B,C重合),求證:
PA=PB+PC.請你根據(jù)圖中所給的軸助線,給出作法并完成證明過程.
(2)類比遷移:如圖②,⊙O的半徑為3,點(diǎn)A,B在⊙O上,C為⊙O內(nèi)一點(diǎn),AB=AC,AB⊥AC,垂足為A,求OC的最小值
(3)拓展延伸:如圖③,⊙O的半徑為3,點(diǎn)A,B在⊙O上,C為⊙O內(nèi)一點(diǎn),AB=
AC,AB⊥AC,垂足為A,則OC的最小值為____________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長BD交CF于點(diǎn)G, AC與BG的交點(diǎn)為M.求證:EM:DM=CG:AC;
(3)在(2)小題的條件下,當(dāng)AB=4,AD=
時(shí),求四邊形ABGF的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=BC=4,∠ACB=90°,正方形BDEF的邊長為2,將正方形BDEF繞點(diǎn)B旋轉(zhuǎn)一周,連接AE、BE、CD.
![]()
(1)請找出圖中與△ABE相似的三角形,并說明理由;
(2)求當(dāng)點(diǎn)E在線段AF上時(shí)CD的長;
(3)設(shè)AE的中點(diǎn)為M,連接FM,試求FM長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,點(diǎn)B的坐標(biāo)為(1,0),以OB為邊,在第一象限內(nèi)作等邊三角形OAB,過點(diǎn)A作AB的垂線,交x軸于點(diǎn)
,過點(diǎn)
作
的垂線,交y軸于點(diǎn)
,過點(diǎn)
作
的垂線,交x軸于點(diǎn)
,過點(diǎn)
作
的垂線,交y軸于點(diǎn)
,…,這樣一直作下去,則點(diǎn)
的坐標(biāo)為______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,開口向下的拋物線與
軸交于點(diǎn)
、
,與
軸交于點(diǎn)
,點(diǎn)
是第一象限內(nèi)拋物線上的一點(diǎn).
![]()
(1)求該拋物線所對應(yīng)的函數(shù)解析式;
(2)設(shè)四邊形
的面積為
,求
的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC的BC邊上一點(diǎn),連接AD,作△ABD的外接圓,將△ADC沿直線AD折疊,點(diǎn)C的對應(yīng)點(diǎn)E落在⊙O上.
(1)求證:AE=AB.
(2)填空:
①當(dāng)∠CAB=90°,cos∠ADB=
,BE=2時(shí),邊BC的長為 .
②當(dāng)∠BAE= 時(shí),四邊形AOED是菱形.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
為
的直徑,點(diǎn)
是
右側(cè)半圓上的一個(gè)動(dòng)點(diǎn),點(diǎn)
是
左側(cè)半圓的中點(diǎn),
是
的切線,切點(diǎn)為
,連接
交
于點(diǎn)
.點(diǎn)
為射線
上一動(dòng)點(diǎn),連接
,![]()
,
.
(1)當(dāng)
時(shí), 求證:
.
(2)若
的半徑為
,請?zhí)羁眨?/span>
①當(dāng)四邊形
為正方形時(shí),
②當(dāng)
時(shí), 四邊形
為菱形.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:
小紅遇到這樣一個(gè)問題:如圖1,
中,
,
,AD是中線,求AD的取值范圍.她的做法是:延長AD到E,使
,連接BE,證明
,經(jīng)過推理和計(jì)算使問題得到解決.
請回答:(1)小紅證明
的判定定理是:__________________________________________;
(2)AD的取值范圍是________________________;
方法運(yùn)用:
(3)如圖2,AD是
的中線,在AD上取一點(diǎn)F,連結(jié)BF并延長交AC于點(diǎn)E,使
,求證:
.
(4)如圖3,在矩形ABCD中,
,在BD上取一點(diǎn)F,以BF為斜邊作
,且
,點(diǎn)G是DF的中點(diǎn),連接EG,CG,求證:
.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com