欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網(wǎng)如圖,?ABCD的面積為64平方厘米(cm2),E,F(xiàn)分別為AB,AD的中點(diǎn),求△CEF的面積.
分析:由于△CEF的底與高難以從平行四邊形的面積中求出,因此,應(yīng)設(shè)法將四邊形分割為三角形,利用面積比與底(高)比來(lái)解決.
解答:解:連接AC.E為AB中點(diǎn),
所以S△BCE=
1
2
S△ABC=
1
4
SABCD=16(平方厘米)精英家教網(wǎng)
同理可得
S△CDF=16(平方厘米).
連接DE,DB,F(xiàn)為AD中點(diǎn),
所以SAEF=
1
2
S△AED=
1
4
S△ABD=
1
8
SABCD=8(平方厘米)
從而S△CEF=SABCD-S△AEF-S△BCE-S△CDF
=64-16-16-8=24(平方厘米).
說(shuō)明(1)E,F(xiàn)是所在邊的中點(diǎn)啟發(fā)我們添加輔助線(xiàn)BD,DE.
(2)平行四邊形的對(duì)角線(xiàn)將平行四邊形分成兩個(gè)三角形的面積相等是由平行四邊形對(duì)邊相等及平行線(xiàn)間的距離處處相等,從而這兩個(gè)三角形的底、高相等獲知的.
點(diǎn)評(píng):本題重在對(duì)平行四邊形性質(zhì)的運(yùn)用,能夠熟練地求解三角形的面積問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•河北)一透明的敞口正方體容器ABCD-A′B′C′D′裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE=α,如圖1所示).探究 如圖1,液面剛好過(guò)棱CD,并與棱BB′交于點(diǎn)Q,此時(shí)液體的形狀為直三棱柱,其三視圖及尺寸如圖2所示.
解決問(wèn)題:
(1)CQ與BE的位置關(guān)系是
CQ∥BE
CQ∥BE
,BQ的長(zhǎng)是
3
3
dm;
(2)求液體的體積;(參考算法:直棱柱體積V=底面積S△BCQ×高AB)
(3)求α的度數(shù).(注:sin49°=cos41°=
3
4
,tan37°=
3
4


拓展:在圖1的基礎(chǔ)上,以棱AB為軸將容器向左或向右旋轉(zhuǎn),但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點(diǎn)P,設(shè)PC=x,BQ=y.分別就圖3和圖4求y與x的函數(shù)關(guān)系式,并寫(xiě)出相應(yīng)的α的范圍.
延伸:在圖4的基礎(chǔ)上,于容器底部正中間位置,嵌入一平行于側(cè)面的長(zhǎng)方形隔板(厚度忽略不計(jì)),得到圖5,隔板高NM=1dm,BM=CM,NM⊥BC.繼續(xù)向右緩慢旋轉(zhuǎn),當(dāng)α=60°時(shí),通過(guò)計(jì)算,判斷溢出容器的液體能否達(dá)到4dm3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•南崗區(qū)二模)在綜合實(shí)踐課上,小明要用如圖所示的矩形硬紙板做一個(gè)裝垃圾的無(wú)蓋紙盒.已知這張矩形硬紙板ABCD邊AB的長(zhǎng)是40cm,邊AD的長(zhǎng)是20cm,裁去角上四個(gè)小正方形之后,就可以折成一個(gè)無(wú)蓋紙盒.設(shè)這個(gè)無(wú)蓋紙盒的底面矩形EFMN的面積是y(單位:cm2),紙盒的高是x(單位:cm).
(1)求出y與x之間的函數(shù)關(guān)系式(不要求寫(xiě)出自變量x的取值范圍);
(2)根據(jù)老師要求,小明做的無(wú)蓋紙盒的高x不能超過(guò)寬EF且紙盒的底面矩形EFMN的面積y等于300cm2,求紙盒高的最大整數(shù)值x是多少cm?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖長(zhǎng)方形ABCD-EFGH.
(1)將長(zhǎng)方體補(bǔ)充完整.(看不見(jiàn)的棱用虛線(xiàn)表示),結(jié)論:
總共缺少5條棱,其中HD、DC、AD看不見(jiàn),棱AE、AB可以看見(jiàn)
總共缺少5條棱,其中HD、DC、AD看不見(jiàn),棱AE、AB可以看見(jiàn)

(2)連接HF、DB,與平面HFBD垂直的面有
平面EHGF、平面ABCD
平面EHGF、平面ABCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖長(zhǎng)方體ABCD-A′B′C′D′有
6
個(gè)面,
12
條棱,
8
個(gè)頂點(diǎn).與棱AB垂直相交的棱有
4
條,與棱AB平行的棱有
3
條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(河北卷)數(shù)學(xué)(解析版) 題型:解答題

一透明的敞口正方體容器ABCD -A′B′C′D′ 裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α (∠CBE = α,如圖1所示).

探究 如圖1,液面剛好過(guò)棱CD,并與棱BB′ 交于點(diǎn)Q,此時(shí)液體的形狀為直三棱柱,其三視圖及尺寸如

圖2所示.解決問(wèn)題:

(1)CQ與BE的位置關(guān)系是       ,BQ的長(zhǎng)是       dm;

(2)求液體的體積;(參考算法:直棱柱體積V液 = 底面積SBCQ×高AB)

(3)求α的度數(shù).(注:sin49°=cos41°=,tan37°=)

拓展 在圖1的基礎(chǔ)上,以棱AB為軸將容器向左或向右旋轉(zhuǎn),但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點(diǎn)P,設(shè)PC = x,BQ = y.分別就圖3和圖4求y與x的函數(shù)關(guān)系式,并寫(xiě)出相應(yīng)的α的范圍.

延伸 在圖4的基礎(chǔ)上,于容器底部正中間位置,嵌入一平行于側(cè)面的長(zhǎng)方形隔板(厚度忽略不計(jì)),得到圖5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.繼續(xù)向右緩慢旋轉(zhuǎn),當(dāng)α = 60°時(shí),通過(guò)計(jì)算,判斷溢出容器的液體能否達(dá)到4 dm3.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案