【題目】如圖,反比例函數(shù)y=
的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點,點A的坐標(biāo)為(2,6),點B的坐標(biāo)為(n,1). ![]()
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)點E為y軸上一個動點,若S△AEB=10,求點E的坐標(biāo).
【答案】
(1)解:把點A(2,6)代入y=
,得m=12,
則y=
.
把點B(n,1)代入y=
,得n=12,
則點B的坐標(biāo)為(12,1).
由直線y=kx+b過點A(2,6),點B(12,1)得
,
解得
,
則所求一次函數(shù)的表達(dá)式為y=﹣
x+7
(2)解:如圖,直線AB與y軸的交點為P,設(shè)點E的坐標(biāo)為(0,m),連接AE,BE,
![]()
則點P的坐標(biāo)為(0,7).
∴PE=|m﹣7|.
∵S△AEB=S△BEP﹣S△AEP=10,
∴
×|m﹣7|×(12﹣2)=10.
∴|m﹣7|=2.
∴m1=5,m2=9.
∴點E的坐標(biāo)為(0,5)或(0,9).
【解析】(1)把點A的坐標(biāo)代入反比例函數(shù)解析式,求出反比例函數(shù)的解析式,把點B的坐標(biāo)代入已求出的反比例函數(shù)解析式,得出n的值,得出點B的坐標(biāo),再把A、B的坐標(biāo)代入直線y=kx+b,求出k、b的值,從而得出一次函數(shù)的解析式;(2)設(shè)點E的坐標(biāo)為(0,m),連接AE,BE,先求出點P的坐標(biāo)(0,7),得出PE=|m﹣7|,根據(jù)S△AEB=S△BEP﹣S△AEP=10,求出m的值,從而得出點E的坐標(biāo).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB為⊙O的直徑,AB=4.動點P從A點出發(fā),以每秒π個單位的速度在⊙O上按順時針方向運動一周.設(shè)動點P的運動時間為t秒,點C是圓周上一點,且∠AOC=40°,當(dāng)t=秒時,點P與點C中心對稱,且對稱中心在直徑AB上.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面一段:
計算![]()
觀察發(fā)現(xiàn),上式從第二項起,每項都是它前面一項的
倍,如果將上式各項都乘以
,所得新算式中除個別項外,其余與原式中的項相同,于是兩式相減將使差易于計算.
解:設(shè)
,①
則
,②
②-①得
,則
.
上面計算用的方法稱為“錯位相減法”,如果一列數(shù),從第二項起每一項與前一項之比都相等(本例中是都等于
),那么這列數(shù)的求和問題,均可用上述“錯位相減”法來解決.
下面請你觀察算式
是否具備上述規(guī)律?若是,請你嘗試用“錯位相減”法計算上式的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-2(k-3)x+k2-4k-1=0.
(1)若這個方程有實數(shù)根,求k的取值范圍;
(2)若這個方程有一個根為1,求k的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中是拋物線拱橋,P處有一照明燈,水面OA寬4m,從O、A兩處觀測P處,仰角分別為α、β,且tanα=
,tan
,以O(shè)為原點,OA所在直線為x軸建立直角坐標(biāo)系. ![]()
(1)求點P的坐標(biāo);
(2)水面上升1m,水面寬多少(
取1.41,結(jié)果精確到0.1m)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a,b互為相反數(shù),c,d互為倒數(shù),m的絕對值是1,n是有理數(shù)且既不是正數(shù)也不是負(fù)數(shù),求20161﹣(a+b)+m
﹣(cd)2016+n(a+b+c+d)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=
的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點,點A的坐標(biāo)為(2,6),點B的坐標(biāo)為(n,1). ![]()
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)點E為y軸上一個動點,若S△AEB=10,求點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為a的正方形ABCD中,E、F是邊AD,AB上兩點(與端點不重合),且AE=BF.連接CE,DF相交于點M,
(1)當(dāng)E為邊AD的中點時,則DF的長為 (用含a的式子表示)
(2)求證:∠MCB+∠MFB=180°.
(3)點M能成為DF的中點嗎?如果能,求出此時CM的長(用含a的式子表示);如果不能,說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某檢修小組乘坐一輛汽車沿東西方向的公路檢修輸電線路,規(guī)定向東為正,他們從A地出發(fā)到收工時,走過的路程記錄如下:(單位:千米)
,
,
,
,
,
,
,
.
(1)他們收工時距A地多遠(yuǎn)?
(2)他們離出發(fā)點A最遠(yuǎn)時有多遠(yuǎn)?
(3)汽車每千米耗油
升,從出發(fā)到返回A地共耗油多少升?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com