分析 (1)根據(jù)題意得:O點(diǎn)應(yīng)該是AD垂直平分線與AB的交點(diǎn);由∠BAC的角平分線AD交BC邊于D,與圓的性質(zhì)可證得AC∥OD,又由∠C=90°,則問題得證;
(2)設(shè)⊙O的半徑為r.則在Rt△OBD中,利用勾股定理列出關(guān)于r的方程,通過解方程即可求得r的值.
解答
解:(1)如圖1,作AD的垂直平分線交AB于點(diǎn)O,O為圓心,OA為半徑作圓.
判斷結(jié)果:BC是⊙O的切線.
如圖2,連接OD.
∵AD平分∠BAC,
∴∠DAC=∠DAB
∵OA=OD,
∴∠ODA=∠DAB
∴∠DAC=∠ODA,
∴OD∥AC,
∴∠ODB=∠C,
∵∠C=90°,
∴∠ODB=90°,
即:OD⊥BC,
∵OD是⊙O的半徑,
∴BC是⊙O的切線.
(2)設(shè)⊙O的半徑為r,則OB=6-r,
∵BD=2$\sqrt{3}$,
在Rt△OBD中,OD2+BD2=OB2,
即r2+(2$\sqrt{3}$)2=(6-r)2,
解得r=2.
故⊙O的半徑是2.
點(diǎn)評(píng) 此題考查了切線的判定與性質(zhì),以及勾股定理等知識(shí).此題綜合性很強(qiáng),解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com