| A. | 4$\sqrt{2}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | 4 |
分析 首先利用在直線L上的同側有兩個點A、B,在直線L上有到A、B的距離之和最短的點存在,可以通過軸對稱來確定,即作出其中一點關于直線L的對稱點,對稱點與另一點的連線與直線L的交點就是所要找的點P的位置,然后根據(jù)弧的度數(shù)發(fā)現(xiàn)一個等腰直角三角形計算.
解答
解:作點B關于MN的對稱點C,連接AC交MN于點P,則P點就是所求作的點.
此時PA+PB最小,且等于AC的長.
連接OA,OC,
∵∠AMN=30°,
∴∠AON=60°,
∴弧AN的度數(shù)是60°,
則弧BN的度數(shù)是30°,
根據(jù)垂徑定理得弧CN的度數(shù)是30°,
則∠AOC=90°,又OA=OC=2,
則AC=2$\sqrt{2}$.
故選C.
點評 此題主要考查了軸對稱-最短路線問題,垂徑定理,直角三角形的性質等,確定點P的位置是本題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
| 圖① | 圖② | 圖③ | |
| 三個角上三個數(shù)的積 | 1×(-1)×2=-2 | (-3)×(-4)×(-5)=-60 | ② |
| 三個角上三個數(shù)的和 | 1+(-1)+2=2 | (-3)+(-4)+(-5)=-12 | ③ |
| 積與和的商 | (-2)÷2=-1 | ① | ④ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | y1>y2 | B. | y1=y2 | C. | y1<y2 | D. | 不能確定 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com