欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.(1)閱讀下面材料:點A、B在數(shù)軸上分別表示實數(shù)a、b,A、B兩點之間的距離表示為|AB|.當A、B兩點中有一點在原點時,不妨設點A在原點,如圖1,|AB|=|OB|=|b|=|a-b|,當A、B兩點都不在原點時,
①如圖2,點A、B都在原點的右邊,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;
②如圖3,點A、B都在原點的左邊,|AB|=|OB|-|OA|=|b|-|a|=(-b)-(-a)=a-b=|a-b|;
③如圖4,點A、B在原點的兩邊,|AB|=|OB|+|OA|=|b|+|a|=(-b)+a=a-b=|a-b|;
綜上,數(shù)軸上A、B兩點之間的距離|AB|=|a-b|.
(2)回答下列問題:
①數(shù)軸上表示1005和-1011的兩點之間的距離是2016;
②數(shù)軸上分別表示x、-5的兩點A、B之間的距離是|x+5|,如果|AB|=2,那么x為-3或-7;
③若|x+3|>|x-5|,則相應x的取值范圍是x>1;
④代數(shù)式|x+2|+|x-3|+|x-1|的最小值為5.

分析 ①根據(jù)兩點間距離公式計算即可.
②根據(jù)兩點間距離公式計算,把問題轉化為方程解決.
③當x≤-3時,無解.當-3<x<5時,1<x<5,當x≥5時,不等式恒成立,由此即可解決問題.
④求代數(shù)式|x+2|+|x-3|+|x-1|的最小值就是在數(shù)軸上找一點P到表示-2,1,3的點的距離之和最小,當P與表示1的點重合時,點P到表示-2,1,3的點的距離之和最小.

解答 解:①數(shù)軸上表示1005和-1011的兩點之間的距離是|1005-(-1011)|=2016,
故答案為:2016;

②數(shù)軸上分別表示x、-5的兩點A、B之間的距離是|x+5|,
∵|AB|=2,
∴|x+5|=2,
解得:x=-3或-7,
故答案為:|x+5|,-3或-7;

③|x+3|>|x-5|,則相應x的取值范圍是:
當x≤-3時,無解.
當-3<x<5時,1<x<5,
當x≥5時,不等式恒成立,
綜上所述,x的取值范圍為x>1.
故答案為x>1.

④代數(shù)式|x+2|+|x-3|+|x-1|的最小值為,
求代數(shù)式|x+2|+|x-3|+|x-1|的最小值就是在數(shù)軸上找一點P到表示-2,1,3的點的距離之和最小,當P與表示1的點重合時,點P到表示-2,1,3的點的距離之和最小,最小值為5.
故答案為5.

點評 本題考查實數(shù)與數(shù)軸、絕對值.兩點間距離公式等知識,解題的關鍵是理解題意,把問題轉化為方程解決,學會用絕對值的幾何意義解決實際問題,屬于中考?碱}型.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

17.在△ABC中,三邊之比BC:AC:AB=1:$\sqrt{3}$:2,求cosA+tanA的值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.“三月三,放風箏”如圖是小東同學自己做的風箏,他根據(jù)AB=AD,BC=DC,不用度量,就知道∠ABC=∠ADC.請用所學的知識給予說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

19.已知某數(shù)的$\frac{1}{2}$減去4,等于某數(shù)與3的差的2倍,求某數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

6.某人從甲地出發(fā)到乙地辦事,他先以每小時4千米的速度步行了全程的一半后,再搭上速度為20千米/時的順路班車,所以比原來需要的時間早到了一小時,問甲乙兩地的距離是多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

16.在一個不透明的盒子里,裝有四個分別標有數(shù)字1,2,3,4的小球,他們的形狀、大小、質地等完全相同.小蘭先從盒子里隨機取出一個小球,記下數(shù)字為x,放回盒子,搖勻后,再由小田隨機取出一個小球,記下數(shù)字為y.
(1)用列表法或畫樹狀圖法表示出(x,y)的所有可能出現(xiàn)的結果.
(2)求小蘭、小田各取一次小球所確定的點(x,y)落在反比例函數(shù)y=$\frac{4}{x}$的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

3.唐代大詩人李白喜好飲酒作詩,民間有“李白斗酒詩百篇”之說.《算法統(tǒng)宗》中記載了一個“李白沽酒”的故事.詩云:
今攜一壺酒,游春郊外走.逢朋加一倍,入店飲半斗.相逢三處店,飲盡壺中酒.試問能算士:如何知原有.
注:古代一斗是10升.
大意是:李白在郊外春游時,做出這樣一條約定:遇見朋友,先到酒店里將壺里的酒增加一倍,再喝掉其中的5升酒.按照這樣的約定,在第3個店里遇到朋友正好喝光了壺中的酒.
(1)列方程求壺中原有多少升酒;
(2)設壺中原有a0升酒,在第n個店飲酒后壺中余an升酒,如第一次飲后所余酒為a1=2a0-5(升),第二次飲后所余酒為a2=2a1-5=22a0-(22-1)×5(升),…
①用含an-1的式子表示an=2an-1-5,再用含a0和n的式子表示an=2na0-(2n-1)×5;
②按照這個約定,如果在第4個店喝光了壺中酒,請借助①中的結論求壺中原有多少升酒.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

20.先化簡,再求值:3(x2y+2xy)+2(x2y-2xy)-5x2y,其中x=1,y=-1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

1.下列運算正確的是( 。
A.-a+b+c+d=-(a-b)-(-c-d)B.x-(y-z)=x-y-z
C.x+2y-2z=x-2(z+y)D.-(x-y+z)=-x-y-z

查看答案和解析>>

同步練習冊答案