解答:
解:(1)∵y=kx沿y軸向下平移3個(gè)單位長(zhǎng)度后經(jīng)過(guò)y軸上的點(diǎn)C,
∴此時(shí)直線的解析式為y=kx-3,令x=0,則y=-3,
∴C(0,-3)(1分)
設(shè)直線BC的解析式為y=kx-3.(1分)
∵B(-3,0)在直線BC上,
∴-3k-3=0解得k=-1.
∴直線BC的解析式為y=-x-3.(1分)
∵拋物線y=-x
2+bx+c過(guò)點(diǎn)B,C,
∴
(2分)
解得
,
∴拋物線的解析式為y=-x
2-4x-3;(1分)
(2)由y=-x
2-4x-3.可得D(-2,1),A(-1,0).(1分)
∴OB=3,OC=3,OA=1,AB=2,
可得△OBC是等腰直角三角形.
∴∠OBC=45°,CB=3
.(1分)
設(shè)拋物線對(duì)稱軸與x軸交于點(diǎn)F,
∴AF=
AB=1.
過(guò)點(diǎn)A作AE⊥BC于點(diǎn)E.
∴∠AEB=90°.
可得BE=AE=
,CE=2
,(1分)
在△AEC與△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,
∴△AEC∽△AFP.(1分)
∴
=
,
=
,
解得,PF=2,
∵點(diǎn)P在拋物線的對(duì)稱軸上,
∴點(diǎn)P的坐標(biāo)為(-2,-2),(-2,2).(2分)